Titelseite der Erstausgabe
Gauß 1803 von Johann Christian August Schwartz, Universitätssternwarte Göttingen

Die Disquisitiones Arithmeticae (lateinisch für Zahlentheoretische Untersuchungen) sind ein Lehrbuch der Zahlentheorie („Höhere Arithmetik“ in Gauß’ Worten), das der deutsche Mathematiker Carl Friedrich Gauß 1798 mit nur 21 Jahren schrieb und das am 29. September 1801 in Leipzig veröffentlicht wurde. In diesem Werk schuf Gauß nach den Worten von Felix Klein „im eigentlichen Sinn die moderne Zahlentheorie und bestimmte bis zum heutigen Tage die ganze folgende Entwicklung“.[1] Er stellt darin frühere Ergebnisse von Pierre de Fermat, Leonhard Euler, Joseph Louis Lagrange und Adrien-Marie Legendre (die Autoren, die Gauß selbst im Vorwort neben Diophant explizit erwähnt) sowie zahlreiche eigene Entdeckungen und Entwicklungen in systematischer Weise dar. Das Buch ist als eines der letzten großen mathematischen Werke in Latein verfasst. Es werden sowohl die elementare Zahlentheorie (Kapitel 1 bis 3) behandelt als auch die Grundlagen der algebraischen Zahlentheorie gelegt. Das Buch ist im klassischen Satz–Beweis-Korollarien-Stil geschrieben, enthält keine Motivation der eingeschlagenen Beweisrichtungen und verbirgt sorgfältig die Art und Weise, wie Gauß zu seinen Entdeckungen kam.[2] Weiteren mathematischen Kreisen zugänglich wurde das Werk von Gauß erst durch die Vorlesungen von Peter Gustav Lejeune Dirichlet.

Die Verzögerung der Drucklegung, die 1798 begann, war unter anderem durch Probleme mit den Buchdruckern verursacht, die das schwierige Werk setzen mussten. Trotzdem wurden im Original noch einmal eingelegte Korrekturseiten erforderlich. Die ersten vier Kapitel stammen noch von 1796 und waren Ende 1797, als Gauß noch in Göttingen war, im Wesentlichen in ihrer endgültigen Form. Die erste Version des zentralen Kapitels 5 stammt vom Sommer 1796, wurde aber bis Anfang 1800 mehrfach umgearbeitet. Ab Herbst 1798 war Gauß wieder in Braunschweig, wo er bis 1807 lebte.

Die Widmung an seinen Förderer, den Herzog von Braunschweig, ist vom Juli 1801 datiert. Der Herzog hatte den Druck erst ermöglicht.

Inhalt

Im Paragraph 262 steht ein neuer Beweis des quadratischen Reziprozitätsgesetzes aus der Theorie quadratischer Formen, für den Gauß im Laufe seines Lebens mehrere weitere Beweise lieferte.[4] Auch dieser Beweis findet sich schon in seinem Tagebuch von 1796 angekündigt. Außerdem findet sich hier eine Theorie ternärer quadratischer Formen (in drei Variablen). In Paragraph 303 stehen seine Berechnungen über – in heutiger Formulierung – die Klassenzahlen imaginärquadratischer Zahlkörper. Insbesondere gibt Gauß Listen für alle solchen Zahlkörper mit 1, 2 und 3 Klassen an. Speziell für die Klassenzahl 1 listet er neun imaginär quadratische Zahlkörper auf und vermutet, dass dies alle seien: Zahlen der Form   ( ganz) mit Dies ist der Ausgangspunkt für Untersuchungen zum „Klassenzahlproblem“, das im Fall der Klassenzahl 1 von Kurt Heegner, Harold Stark, Alan Baker gelöst wurde und allgemein in den 1980er Jahren durch Don Zagier und Benedict Gross einen gewissen Abschluss fand. Die Fälle der Klassenzahl 2 und 3 imaginärquadratischer Zahlkörper wurden später auch bewiesen (siehe Klassenzahlproblem). Paragraph 293 gibt Lösungen für das Fermatsche Polygonalzahlproblem für Quadrate (was schon Lagrange löste) und Kuben. In Paragraph 356 tauchen zum ersten Mal Gauß-Summen auf. Ein Satz in Paragraph 358 wurde später von André Weil als Spezialfall der Riemannhypothese für Kurven über endlichen Körpern erkannt (siehe Weil-Vermutungen).[5] Für eine andere elliptische Kurve stellte Gauß einen zur Riemann-Vermutung äquivalenten Satz in der letzten Eintragung seines Tagebuchs auf (bewiesen von Gustav Herglotz 1921).[6][7]

Viele der Sätze stehen schon in der fast gleichzeitig entstandenen Zahlentheorie von Legendre, sie wurden aber von Gauß unabhängig gefunden, da er Legendres Buch erst kennenlernte, als ein Großteil seiner Disquisitiones schon beim Drucker waren (so Gauß in seinem Vorwort). Es kam auch zu einer Verstimmung von Legendre, der sich ungenügend von Gauß gewürdigt sah und sich bei diesem darüber beklagte. Legendres Buch stand später völlig im Schatten von Gauß’ Disquisitiones. Gauß plante eine Fortsetzung der Disquisitiones, es kam aber nie dazu. Material dazu wurde zum Beispiel in seinen Abhandlungen über biquadratische Reste veröffentlicht (1825, 1831), in der er gaußsche Zahlen einführt. Ein „achtes Kapitel“ der Disquisitiones wurde im Nachlass entdeckt (Analysis Residuorum) und im zweiten Band der Gesamtausgabe veröffentlicht.[9] Es sollte, so Gauß im Vorwort der Disquisitiones, in denen er auch mehrfach auf dieses achte Kapitel verweist, allgemein unbestimmte Gleichungen in der modularen Arithmetik behandeln.

Viele tiefsinnige Bemerkungen von Gauß (wie die zur Lemniskate, Ausgangspunkt der Theorie der komplexen Multiplikation in der algebraischen Zahlentheorie) regten Mathematiker wie Augustin-Louis Cauchy (der 1815 das Fermatsche Polygonalzahlproblem vollständig löste), Gotthold Eisenstein, Carl Gustav Jacobi, Ernst Eduard Kummer, Dirichlet (der ein Exemplar der Disquisitiones stets griffbereit an seinem Schreibtisch hatte), Charles Hermite, Hermann Minkowski, David Hilbert und selbst noch André Weil zu weiteren Untersuchungen an. Ein weiteres Beispiel ist die Erweiterung der Kompositionsgesetze quadratischer Formen auf höhere Kompositionsgesetze durch Manjul Bhargava ab 2004.

Ausgaben

Sekundärliteratur

Quellen

  1. Felix Klein: Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Julius Springer, Berlin 1926, S. 26
  2. Klein, loc.cit., S. 27
  3. 1837 von Jacobi eingeführt aber implizit im Buch von Gauß. David A. Cox, Primes of the form , Wiley, 1989, S. 64
  4. Insgesamt sechs wesentlich verschiedene, Gauß selbst unterscheidet acht. Dieser Beweis über die Theorie quadratischer Formen wird in Daniel Flath, Introduction to number theory, Wiley 1989, S. 163, dargestellt. Flath stellt auch den ersten Beweis und weitere Beweise des Satzes von Gauß dar.
  5. David A. Cox, Primes of the form , Wiley, 1989, S. 86
  6. Behandelt in Kenneth Ireland, Michael Rosen: A classical introduction to modern number theory, Springer, 1990, S. 166
  7. Frans Oort: The last entry, Notices ICCM, Juli 2016, pdf
  8. angekündigt schon im Intelligenzblatt der Allgemeinen Literaturzeitung, Jena 1796
  9. Carl Friedrich Gauß: Werke. Band 2, Dieterich, Göttingen 1863, S. 212–240 (bei Google Books: [1]). Gleichzeitig sind in dem Manuskript Vorentwürfe für einige der veröffentlichten Kapitel. Die entsprechenden Abschnitte wurden in Band 2 der Gesamtausgabe weggelassen.
  10. Norbert Schappacher zu Gauß, Disquisitiones, in: Michael Hagner (Hrsg.), Klassiker der Naturwissenschaften, Kindler Kompakt, J. B. Metzler, 2016, S. 93/94