It has been suggested that Integrated Aqua-Vegeculture System be merged into this article. (Discuss) Proposed since May 2024.
A small, portable aquaponics system. The term aquaponics is A portmanteau of the terms aquaculture and hydroponic agriculture.
Aquaponic greenhouse in Apaga

Aquaponics is a food production system that couples aquaculture (raising aquatic animals such as fish, crayfish, snails or prawns in tanks) with hydroponics (cultivating plants in water) whereby the nutrient-rich aquaculture water is fed to hydroponically grown plants.[1][2]

As existing hydroponic and aquaculture farming techniques form the basis of all aquaponic systems, the size, complexity, and types of foods grown in an aquaponic system can vary as much as any system found in either distinct farming discipline.[3]

Fish, plants and microbes are three main components of aquaponics, and microbes play the bridge role of converting fish waste to plant nutrients. The three major types of modern aquaponic designs are deep-water or "raft", nutrient film technology "NFT", and media-based bed or reciprocating systems.[4]

The media-based grow bed is a hydroponic trough filled with inert substrate serving as root support and microbial substrate. The water is commonly supplied in an ebb and flow pattern, ensuring sequential nutrition and aeration. The DWC system consists of large troughs with perforated floating rafts, where net plant pots are inserted. In the DWC system, these plant pots are generally filled with media, such as rockwool, coco or pumice that support the roots, which are then continually submerged in the water tank. The Nutrient Film Technique (NFT) consists of narrow channels of perforated squared pipes where the roots are partially immersed in a thin layer of streaming water.[5]

History

Further information: Historical hydroculture

Woodcut from the 13th-century Chinese agricultural manual Wang Zhen's Book on Farming (王禎農書) showing rice grown in a floating raft planter system (架田, lit "framed paddy") in a pond

Aquaponics has ancient roots, although there is some debate on its first occurrence;

Aquaponics has been said to have evolved from relatively ancient agriculture practices associated with integrating fish culture with plant production, especially those developed within the South East Asian, flooded rice paddy farming context and South American Chinampa, floating island, agriculture practices (Komives and Junge 2015). In reality, historically, fish were rarely actively added to rice paddy fields until the nineteenth century (Halwart and Gupta 2004) and were present in very low densities which would not contribute to any substantial nutritive assistance to the plants. Chinampas were traditionally built on lakes in Mexico where nutrient advantages may have been supplied via the eutrophic or semi-eutrophic lake sediments rather than directly from any designed or actively integrated fish production system (Morehart 2016; Baquedano 1993).[6]

Floating aquaponics systems on polycultural fish ponds have been installed in China in more recent years on a large scale. They are used to grow rice, wheat and canna lily and other crops,[16] with some installations exceeding 2.5 acres (10,000 m2).[17]

An integrated system of aquaculture and agriculture where fish are grown in rice paddies has been employed in the North Kerian area of Perak in Peninsular Malaysia since the 1930's. Several rice-fish systems are also reported to have a long history in Indonesia.[18]

Diagram of the University of the Virgin Islands commercial aquaponics system designed to yield 5 metric tons of Tilapia per year.[19]

In 1977, German scientist Ludwig C.A. Naegel contributed to the field of aquaponics with his publication 'Combined Production of Fish and Plants in Recirculating Water.' The work presented experiments on the co-cultivation of tilapia and tomatoes, showcasing the practicality of a recirculating system that supports both fish and plant production.[20] This research is among the efforts by a global community of researchers to develop modern aquaponics systems.

Balarin and Haller conducted studies on the thermal dynamics of aquaponic systems, examining the effects of varying water temperatures on the growth rates of fish and plants.[21]

In the development of biofiltration techniques within aquaponics, Muir, Paller, and Lewis introduced reciprocating biofilters (RBFs). These biofilters enhanced the efficiency of nutrient uptake by plants and reduced the accumulation of harmful metabolites in the water[citation needed].

Watten and Busch contributed to the understanding of nutrient dynamics in aquaponic systems. Their studies on the integration of vascular plants into recirculating aquaculture systems (RAS) demonstrated how plants could effectively extract excess nutrients from the water.[22]

Prior to the technological advances of the 1980s, most attempts to integrate hydroponics and aquaculture had limited success.[23] Many of the modern developments and discoveries of aquaponics are generally attributed to the New Alchemy Institute and North Carolina State University.[24][25]

In 1969, John and Nancy Todd and William McLarney founded the New Alchemy Institute and built a prototype replica of the Aztec's aquaponic system (with some modifications) to provide shelter, vegetables, and fish throughout the year.[25] In 1984, Ronald Zweig of the New Alchemy Institute developed a system he called the 'hydroponic aquaculture pond,' also referred to as a 'hydroponic solar pond.' This system integrated a floating hydroponic component within the institute's existing solar pond[18] these floating raft systems are the foundation for what became later known as deep water culture.

Mark McMurtry and others at North Carolina State University conceptualized the Integrated Aqua-Vegeculture System (iAVs). This system, which integrates aquaculture with sand-based grow beds,[26] represents one of the earliest instances of a closed-loop aquaponic system.[27]

In 1979, James Rakocy and his colleagues at the University of the Virgin Islands began experimenting with media beds in aquaponics. Initially, the system utilized a gravel bed for plant growth, alongside a conical filter settling tank to collect larger solid waste, and a separate tank for housing the fish.[28] In 1986, they started to test the use of floating rafts constructed from polystyrene.[19] By 1997, Rakocy's research had led to the adoption of deep water culture (DWC) hydroponic grow beds in large-scale aquaponic systems.[29]

Other institutes focused their research on systems known as "ebb and flow," or "flood and drain" systems. These systems utilize coarse media like gravel or expanded clay, with bell siphons facilitating the irrigation cycle[30] These systems are sometimes referred to as "Speraneo Systems," as they were named after Tom and Paula Speraneo, who created and sold an instructional manual in the 1990s[31] based on systems that were partly developed from the original concepts established at North Carolina State University by McMurtry and the iAVs research group.[32]

The first aquaponics research in Canada was a small system added onto existing aquaculture research at a research station in Lethbridge, Alberta. Canada saw a rise in aquaponics setups throughout the '90s, predominantly as commercial installations raising high-value crops such as trout and lettuce. A setup based on the deepwater system developed at the University of Virgin Islands was built in a greenhouse at Brooks, Alberta where Dr. Nick Savidov and colleagues researched aquaponics from a background of plant science. The team made findings on rapid root growth in aquaponics systems and on closing the solid-waste loop and found that, owing to certain advantages in the system over traditional aquaculture, the system can run well at a low pH level, which is favored by plants but not fish.[citation needed]

The term, "aquaponics," begins to appear in the titles for academic literature in the late 1990's. Prior to this, aquaponics was referred to in the 1970's and 1980's by names such as "hydroponic aquaculture pond," "hydroponic solar pond," "integrated agriculture," "integrated aquaculture," "integrated fish culture hydroponic vegetable production system," and "Integrated Aqua-Vegiculture System (IAVS).[18]

Parts of an aquaponic system

A commercial aquaponics system. An electric pump moves nutrient-rich water from the fish tank through a solids filter to remove particles the plants above cannot absorb. The water then provides nutrients for the plants and is cleansed before returning to the fish tank below.

Aquaponics consists of two main parts, with the aquaculture part for raising aquatic animals and the hydroponics part for growing plants.[33][34] Aquatic effluents, resulting from uneaten feed or raising animals like fish, accumulate in water due to the closed-system recirculation of most aquaculture systems. The effluent-rich water becomes toxic to the aquatic animal in high concentrations but this contains nutrients essential for plant growth.[33] Although consisting primarily of these two parts, aquaponics systems are usually grouped into several components or subsystems responsible for the effective removal of solid wastes, for adding bases to neutralize acids, or for maintaining water oxygenation.[33] Typical components include:

Depending on the sophistication and cost of the aquaponics system, the units for solids removal, biofiltration, and/or the hydroponics subsystem may be combined into one unit or subsystem,[33] which prevents the water from flowing directly from the aquaculture part of the system to the hydroponics part. By utilizing gravel or sand as plant supporting medium, solids are captured and the medium has enough surface area for fixed-film nitrification.[33] The ability to combine biofiltration and hydroponics allows for aquaponic system, in many cases, to eliminate the need for an expensive, separate biofilter.[35]

Live components

An aquaponic system depends on different live components to work successfully. The three main live components are plants, fish (or other aquatic creatures) and bacteria. Some systems also include additional live components like worms.

Plants

Further information: Rhizofiltration

A Deep Water Culture hydroponics system where plant grow directly into the effluent rich water without a soil medium. Plants can be spaced closer together because the roots do not need to expand outwards to support the weight of the plant.
Plant placed into a nutrient rich water channel in a nutrient film technique (NFT) system

Many plants are suitable for aquaponic systems, though which ones work for a specific system depends on the maturity and stocking density of the fish. These factors influence the concentration of nutrients from the fish effluent and how much of those nutrients are made available to the plant roots via bacteria. Green leaf vegetables with low to medium nutrient requirements are well adapted to aquaponic systems, including chinese cabbage, lettuce, basil, spinach, chives, herbs, and watercress.[34][36]

Spinach seedlings, 5 days old, by aquaponics

Other plants, such as tomatoes, cucumbers, and peppers, have higher nutrient requirements and will do well only in mature aquaponic systems with high stocking densities of fish.[36]

Plants that are common in salads have some of the greatest success in aquaponics, including cucumbers, shallots, tomatoes, lettuce, capsicum, red salad onions and snow peas.[37]

Some profitable plants for aquaponic systems include chinese cabbage, lettuce, basil, roses, tomatoes, okra, cantaloupe and bell peppers.[34]

Other species of vegetables and/or fruit that grow well in an aquaponic system include watercress, basil, coriander, parsley, lemongrass, sage, beans, peas, kohlrabi, taro, Pomegranate, radishes, strawberries, melons, onions, turnips, parsnips, sweet potato, cauliflower, cabbage, broccoli, and eggplant as well as the choys that are used for stir fries.[37]

Fish (or other aquatic creatures)

Filtered water from the hydroponics system drains into a catfish tank for re-circulation.

Main article: Aquaculture

Freshwater fish are the most common aquatic animal raised using aquaponics due to their ability to tolerate crowding. Freshwater crayfish and prawns are also sometimes used,[38][33] as they excrete nutrient rich feces. There is a branch of aquaponics using saltwater fish, called saltwater aquaponics. There are many species of warmwater and cold-water fish that adapt well to aquaculture systems.

In practice, tilapia are the most popular fish for home and commercial projects that are intended to raise edible fish because it is a warmwater fish species that can tolerate crowding and changing water conditions.[36] Barramundi, silver perch, eel-tailed catfish or tandanus catfish, jade perch and Murray cod are also used.[34] For temperate climates when there isn't ability or desire to maintain water temperature, bluegill and catfish are suitable fish species for home systems.

Koi and goldfish may also be used, if the fish in the system need not be edible.

Other suitable fish include channel catfish, rainbow trout, perch, common carp, Arctic char, largemouth bass and striped bass.[36]

Bacteria

Further information: Nitrogen Cycle

Nitrification, the aerobic conversion of ammonia into nitrates, is one of the most important functions in an aquaponic system as it reduces the toxicity of the water for fish, and allows the resulting nitrate compounds to be removed by the plants for nourishment.[33] Ammonia is steadily released into the water through the excreta and gills of fish as a product of their metabolism, but must be filtered out of the water since higher concentrations of ammonia (commonly between 0.5 and 1 ppm)[citation needed] can impair growth, cause widespread damage to tissues, decrease resistance to disease and even kill the fish.[39] Although plants can absorb ammonia from the water to some degree, nitrates are assimilated more easily,[34] thereby efficiently reducing the toxicity of the water for fish.[33] Ammonia can be converted into safer nitrogenous compounds through combined healthy populations of 2 types of bacteria: Nitrosomonas which convert ammonia into nitrites, and Nitrobacter which then convert nitrites into nitrates. While nitrite is still harmful to fish due to its ability to create methemoglobin, which cannot bind oxygen, by attaching to hemoglobin, nitrates are able to be tolerated at high levels by fish.[39] For this, nitrite levels must be maintained at concentrations lower than 1ppm.[40] Nitrate, which is much safer for fish, can be tolerated at concentrations of over 150ppm.[40] Typically, nitrogen cycling (system cycling) must conducted for 3–5 weeks in order to achieve and maintain these ideal concentrations of nitrogen compounds. High surface area provides more space for the growth of nitrifying bacteria. Grow bed material choices require careful analysis of the surface area, price and maintainability considerations.

Hydroponic subsystem

Main article: Hydroponics

Plants are grown in hydroponics systems, with their roots immersed in the nutrient-rich effluent water. This enables them to filter out the ammonia that is toxic to the aquatic animals, or its metabolites. After the water has passed through the hydroponic subsystem, it is cleaned and oxygenated, and can return to the aquaculture vessels. This cycle is continuous. Common aquaponic applications of hydroponic systems include:

Since plants at different growth stages require different amounts of minerals and nutrients, plant harvesting is staggered with seedlings growing at the same time as mature plants. This ensures stable nutrient content in the water because of continuous symbiotic cleansing of toxins from the water.[43]

Biofilter

In an aquaponics system, the bacteria responsible for the conversion of ammonia to usable nitrates for plants form a biofilm on all solid surfaces throughout the system that are in constant contact with the water. The submerged roots of the vegetables combined have a large surface area where many bacteria can accumulate. Together with the concentrations of ammonia and nitrites in the water, the surface area determines the speed with which nitrification takes place. Care for these bacterial colonies is important as to regulate the full assimilation of ammonia and nitrite. This is why most aquaponics systems include a biofiltering unit, which helps facilitate growth of these microorganisms. Typically, after a system has stabilized ammonia levels range from 0.25 to .50 ppm; nitrite levels range from 0.0 to 0.25 ppm, and nitrate levels range from 5 to 150 ppm.[citation needed] During system startup, systems take several weeks to begin the nitrification process.[44] As a result, spikes may occur in the levels of ammonia (up to 6.0 ppm) and nitrite (up to 15 ppm) as the nitrosomonas and nitrobacter bacteria have yet to establish populations within the system. Nitrate levels peak later in the startup phase as the system completes nitrogen cycles and maintains a healthy biofilter and these bacteria grow into a mature colony.[45] with nitrate levels peaking later in the startup phase.[citation needed] In the nitrification process ammonia is oxidized into nitrite, which releases hydrogen ions into the water. Over time, the water's pH will slowly drop, non-sodium bases such as potassium hydroxide or calcium hydroxide can be used to neutralize the water's pH[33] if insufficient quantities are naturally present in the water to provide a buffer against acidification. In addition, selected minerals or nutrients such as iron can be added in addition to the fish waste that serves as the main source of nutrients to plants.[33]

A good way to deal with solids buildup in aquaponics is the use of worms, which liquefy the solid organic matter so that it can be utilized by the plants and/or other animals in the system. For a worm-only growing method, please see Vermiponics.[citation needed]

Operation

The five main inputs to the system are water, oxygen, light, feed given to the aquatic animals, and electricity to pump, filter, and oxygenate the water. Spawn or fry may be added to replace grown fish that are taken out from the system to retain a stable system. In terms of outputs, an aquaponics system may continually yield plants such as vegetables grown in hydroponics, and edible aquatic species raised in an aquaculture. Typical build ratios are .5 to 1 square foot of grow space for every 1 U.S. gal (3.8 L) of aquaculture water in the system. 1 U.S. gal (3.8 L) of water can support between .5 lb (0.23 kg) and 1 lb (0.45 kg) of fish stock depending on aeration and filtration.[46]

Ten primary guiding principles for creating successful aquaponics systems were issued by Dr. James Rakocy, the director of the aquaponics research team at the University of the Virgin Islands, based on extensive research done as part of the Agricultural Experiment Station aquaculture program.[47]

Feed source

As in most aquaculture based systems, stock feed often consists of fish meal derived from lower-value species. Ongoing depletion of wild fish stocks makes this practice unsustainable. Organic fish feeds may prove to be a viable alternative that relieves this concern. Other alternatives include growing duckweed with an aquaponics system that feeds the same fish grown on the system,[48] excess worms grown from vermiculture composting, using prepared kitchen scraps,[49] as well as growing black soldier fly larvae to feed to the fish using composting grub growers.[50]

Plant nutrients

Like hydroponics, a few minerals and micronutrients can be added to improve plant growth. Iron is the most deficient nutrient in aquaponics, but it can be added through mixing Iron Chelate powder with water. Potassium can be added as potassium sulfate through foliar spray. Less vital nutrients include magnesium as epsom salt, calcium as calcium chloride, and boron.[51] Biological filtration of aquaculture wastes yield high nitrate concentrations, which is great for leafy greens. For flowering plants with high nutrient demands, it is recommended to introduce supplemental nutrients such as magnesium, calcium, potassium, and phosphorus. Common sources are sulfate of potash, potassium bicarbonate, monoammonium phosphate, etc. Nutrient deficiency in wastewater from fish component (RAS) can be completely masked using raw or mineralized sludge, usually containing 3–17 times higher nutrient concentrations. RAS effluents (wastewater and sludge combined) contain adequate N, P, Mg, Ca, S, Fe, Zn, Cu, Ni to meet most aquaponic crop needs. Potassium is generally deficient requiring full-fledged fertilization. Micronutrients B, Mo are partly sufficient and can be easily ameliorated by increasing sludge release. The presumption surrounding 'definite' phyto-toxic sodium levels in RAS effluents should be reconsidered – practical solutions available too. No threat of heavy metal accumulation exists within the aquaponics loop.[52]

Water usage

Aquaponic systems do not typically discharge or exchange water under normal operation, but instead, recirculate and reuse water very effectively. The system relies on the relationship between the animals and the plants to maintain a stable aquatic environment that experience a minimum of fluctuation in ambient nutrient and oxygen levels. Plants are able to recover dissolved nutrients from the circulating water, meaning that less water is discharged and the water exchange rate can be minimized.[53] Water is added only to replace water loss from absorption and transpiration by plants, evaporation into the air from surface water, overflow from the system from rainfall, and removal of biomass such as settled solid wastes from the system. As a result, aquaponics uses approximately 2% of the water that a conventionally irrigated farm requires for the same vegetable production.[54] This allows for aquaponic production of both crops and fish in areas where water or fertile land is scarce. Aquaponic systems can also be used to replicate controlled wetland conditions. Constructed wetlands can be useful for biofiltration and treatment of typical household sewage.[55] The nutrient-filled overflow water can be accumulated in catchment tanks, and reused to accelerate growth of crops planted in soil, or it may be pumped back into the aquaponic system to top up the water level.[56]

Energy usage

An aquaponics system that uses downwards movement of water and greenhouse light to reduce energy consumption.

Aquaponic installations rely in varying degrees on man-made energy, technological solutions, and environmental control to achieve recirculation and water/ambient temperatures. However, if a system is designed with energy conservation in mind, using alternative energy and a reduced number of pumps by letting the water flow downwards as much as possible, it can be highly energy efficient. While careful design can minimize the risk, aquaponics systems can have multiple 'single points of failure' where problems such as an electrical failure or a pipe blockage can lead to a complete loss of fish stock.[citation needed]

Fish stocking

In order for aquaponic systems to be financially successful and make a profit whilst also covering its operating expenses, the hydroponic plant components and fish rearing components need to almost constantly be at maximum production capacity.[33] To keep the bio-mass of fish in the system at its maximum (without limiting fish growth), there are three main stocking method that can help maintain this maximum.

Ideally the bio-mass of fish in the rearing tanks doesn't exceed 0.5 lbs/gallon, in order to reduce stress from crowding, efficiently feed the fish, and promote healthy growth.[33]

Disease and pest management

Although pesticides can normally be used to take care of insects on crops, in an aquaponic system the use of pesticides would threaten the fish ecosystem. On the other hand, if the fish acquire parasites or diseases, therapeutants cannot be used as the plants would absorb them.[33] In order to maintain the symbiotic relationship between the plants and the fish, non-chemical methods such as traps, physical barriers and biological control (such as parasitic wasps/ladybugs to control white flies/aphids) should be used to control pests.[33] The most effective organic pesticide is Neem oil, but only in small quantities to minimize spill over fish's water.[citation needed]. Commercialization of aquaponics is often stalled by bottlenecks in pest and disease management. The use of chemical control methods is highly complicated for all systems. While insecticides and herbicides are replaceable by well‐established commercial biocontrol measures, fungicides and nematicides are still relevant in aquaponics. Monitoring and cultural control are the first approaches to contain pest population. Biological controls, in general, are adaptable to a larger extent. Non‐chemical prophylactic measures are highly proficient for pest and disease prevention in all designs.[57]

Automation, monitoring, and control

Many have tried to create automatic control and monitoring systems and some of these demonstrated a level of success. For instance, researchers were able to introduce automation in a small scale aquaponic system to achieve a cost-effective and sustainable farming system.[58][59] Commercial development of automation technologies has also emerged. For instance, a company has developed a system capable of automating the repetitive tasks of farming and features a machine learning algorithm that can automatically detect and eliminate diseased or underdeveloped plants.[60] A 3.75-acre aquaponics facility that claims to be the first indoor salmon farm in the United States also includes an automated technology.[61] The aquaponic machine has made notable strides in the documenting and gathering of information regarding aquaponics.[citation needed]

Economic viability

Aquaponics offers a diverse and stable polyculture system that allows farmers to grow vegetables and raise fish at the same time. By having two sources of profit, farmers can continue to earn money even if the market for either fish or plants goes through a low cycle.[39] The flexibility of an aquaponic system allows it to grow a large variety of crops including ordinary vegetables, herbs, flowers and aquatic plants to cater to a broad spectrum of consumers.[39] Herbs, lettuce and speciality greens such as basil or spinach are especially well suited for aquaponic systems due to their low nutritional needs.[39] For the growing number of environmentally conscious consumers, products from aquaponic systems are organic and pesticide free, whilst also leaving a small environmental footprint.[39] Aquaponic systems additionally are economically efficient due to low water usage, effective nutrient cycling and needing little land to operate.[39] Because soil isn't needed and only a little bit of water is required, aquaponic systems can be set up in areas that have traditionally poor soil quality or contaminated water.[39] More importantly, aquaponic systems are usually free of weeds, pests and diseases that would affect soil, which allows them to consistently and quickly produce high quality crops to sell.[39]

The research pertaining to aquaponic systems, and their economic viability is still very limited compared to conventional hydroponic systems. With the research that is available, the economic viability of aquaponic businesses must be determined case by case. There are many variables including system design, seasonal weather, and local costs of energy or land that factor into the profitability of aquaponic businesses. According to a study that included 208 aquaponic businesses in the United States, the average investment cost of aquaponic businesses was $5,000 - $10,000 and only 10% of businesses were reporting more than $50,000 in annual revenue.[62]

There are two primary aquaponic systems: Single Recirculating Aquaponic Systems (SRAPS or coupled systems) and Double Recirculating Aquaponic Systems (DRAPS or decoupled systems). The primary difference is that in a DRAPS system, the water from the aquaculture (fish) system is used to provide nutrients to the hydroponic (plant) system but the two systems operate autonomously of each other. Unlike with SRAPS, a grower can add synthetic fertilizer into a DRAPS system without hurting the fish. DRAPS tomato systems that use fertilizers in addition to fish waste can provide the same level of production as conventional hydroponic systems while reducing fertilizer usage by 23.6%. SRAPS systems are not able to mimic these results.[63] Additional research shows the support that aquaponic systems can use 14% less fertilizer than hydroponic systems.[64] Despite this reduction, a grower should determine if the cost of maintaining aquaculture is cheaper than the use of extra fertilizer in hydroponics.

Other non-system-based barriers to the economic success of aquaponic systems could include that these systems require a high degree of knowledge in multiple disciplines, a lack of financing opportunities for aquaponics, and the fact that the general public doesn't understand what aquaponics is.[5] An aquaponics business may require additional branding strategies compared to hydroponics, which is a technology that is relatively well known at this point in the United States.

Current examples

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (February 2021) (Learn how and when to remove this message)

Europe

Asia

North America

Caribbean

Aquaponic gardeners from all around the world are gathering in online community sites and forums to share their experiences and promote the development of this form of gardening,[84] as well as creating extensive resources on how to build home systems.

There are various modular systems made for the public that utilize aquaponic systems to produce organic vegetables and herbs, and provide indoor decor at the same time.[85] These systems can serve as a source of herbs and vegetables indoors. Universities are promoting research on these modular systems as they get more popular among city dwellers.[86]

See also

References

  1. ^ Rakocy, James E. (2012-03-23), "Aquaponics-Integrating Fish and Plant Culture", Aquaculture Production Systems, Oxford, UK: Wiley-Blackwell, pp. 344–386, doi:10.1002/9781118250105.ch14, ISBN 978-1-118-25010-5, retrieved 2021-07-30
  2. ^ Baganz, Gösta F. M.; Junge, Ranka; Portella, Maria C.; Goddek, Simon; Keesman, Karel J.; Baganz, Daniela; Staaks, Georg; Shaw, Christopher; Lohrberg, Frank; Kloas, Werner (2021-07-26). "The aquaponic principle—It is all about coupling". Reviews in Aquaculture. 14: 252–264. doi:10.1111/raq.12596. ISSN 1753-5123.
  3. ^ Rakocy, James E.; Bailey, Donald S. "Update on Tilapia and Vegetable Production in the UVI Aquaponic System" (PDF). University of the Virgin Islands Agricultural Experiment Station. Archived from the original (PDF) on 2 March 2013.
  4. ^ Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke (2016-06-01). "Effects of pH on nitrogen transformations in media-based aquaponics". Bioresource Technology. Special Issue on Challenges in Environmental Science and Engineering (CESE-2015). 210: 81–87. Bibcode:2016BiTec.210...81Z. doi:10.1016/j.biortech.2015.12.079. ISSN 0960-8524. PMID 26783143.
  5. ^ a b Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability, 7(4), 4199–4224. MDPI AG. Retrieved from http://dx.doi.org/10.3390/su7044199  This article incorporates text from this source, which is available under the CC BY 4.0 license.
  6. ^ Goddek, Simon; Joyce, Alyssa; Kotzen, Benz; Burnell, Gavin M., eds. (2019). Aquaponics Food Production Systems. doi:10.1007/978-3-030-15943-6. ISBN 978-3-030-15942-9.
  7. ^ a b Boutwelluc, Juanita (December 15, 2007). "Aztecs' aquaponics revamped". Napa Valley Register. Archived from the original on December 20, 2013. Retrieved April 24, 2013.
  8. ^ Rogosa, Eli. "How does aquaponics work?". Archived from the original on May 25, 2013. Retrieved April 24, 2013.
  9. ^ Crossley, Phil L. (2004). "Sub-irrigation in wetland agriculture" (PDF). Agriculture and Human Values. 21 (2/3): 191–205. doi:10.1023/B:AHUM.0000029395.84972.5e. S2CID 29150729. Archived (PDF) from the original on December 6, 2013. Retrieved April 24, 2013.
  10. ^ Integrated Agriculture-aquaculture: A Primer, Issue 407. FAO. 2001. ISBN 9251045992. Archived from the original on 2018-05-09.
  11. ^ Tomita-Yokotani, K.; Anilir, S.; Katayama, N.; Hashimoto, H.; Yamashita, M. (2009). "Space agriculture for habitation on mars and sustainable civilization on earth". Recent Advances in Space Technologies: 68–69.
  12. ^ "Carassius carassius". Food and Agriculture Organization of the United Nations. Fisheries and Aquaculture Department. Archived from the original on January 1, 2013. Retrieved April 24, 2013.
  13. ^ McMurtry, M. R.; Nelson, P. V.; Sanders, D. C. (1988). "Aqua-Vegeculture Systems". International Ag-Sieve. 1 (3). Archived from the original on June 19, 2012. Retrieved April 24, 2013.
  14. ^ Bocek, Alex. "Introduction to Fish Culture in Rice Paddies". Water Harvesting and Aquaculture for Rural Development. International Center for Aquaculture and Aquatic Environments. Archived from the original on March 17, 2010. Retrieved April 24, 2013.
  15. ^ "王禎農書::卷十一::架田 - 维基文库,自由的图书馆" (in Chinese). Archived from the original on 2018-05-09. Retrieved 2017-11-30 – via Wikisource.
  16. ^ "Aquaponics floating biofilter grows rice on fish ponds". Tom Duncan. Archived from the original on 2014-01-08. Retrieved 2014-01-20.
  17. ^ "Waste Management and Environment - Floating new ideas". WME Magazine. Retrieved 2014-01-20. ((cite web)): Check |archive-url= value (help)CS1 maint: url-status (link)
  18. ^ a b c Goodman, Elisha R. (Elisha Renee) (2011). Aquaponics : community and economic development (Thesis thesis). Massachusetts Institute of Technology. hdl:1721.1/67227.
  19. ^ a b Rakocy, James E. "Aquaculture – Aquaponic Systems". University of the Virgin Islands Agricultural Experiment Station. Archived from the original on 4 March 2013. Retrieved 11 March 2013.
  20. ^ Naegel, Ludwig C.A. (1977). "Combined production of fish and plants in recirculating water". Aquaculture. 10 (1): 17–24. Bibcode:1977Aquac..10...17N. doi:10.1016/0044-8486(77)90029-1.
  21. ^ Balarin, J.; Haller, R. (1982-03-07). "The intensive culture of tilapia in tanks, raceways and cages". S2CID 129627358. ((cite journal)): Cite journal requires |journal= (help)
  22. ^ Watten, Barnaby J.; Busch, Robert L. (1984-10-01). "Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system". Aquaculture. 41 (3): 271–283. Bibcode:1984Aquac..41..271W. doi:10.1016/0044-8486(84)90290-4. ISSN 0044-8486.
  23. ^ Aqu@teach (2020-09-03). "History of aquaponics". learn.farmhub.ag. Retrieved 2024-05-05.
  24. ^ "Introduction to Aquaponics". Palouse-Clearwater Environmental Institute. Retrieved 2024-05-03.
  25. ^ a b Okomoda, Victor Tosin; Oladimeji, Sunday Abraham; Solomon, Shola Gabriel; Olufeagba, Samuel Olabode; Ogah, Samuel Ijabo; Ikhwanuddin, Mhd (March 2023). "Aquaponics production system: A review of historical perspective, opportunities, and challenges of its adoption". Food Science & Nutrition. 11 (3): 1157–1165. doi:10.1002/fsn3.3154. ISSN 2048-7177. PMC 10002891. PMID 36911833.
  26. ^ www.fadr.msu.ru http://www.fadr.msu.ru/rodale/agsieve/txt/vol1/3/art7.html. Retrieved 2024-05-03. ((cite web)): Missing or empty |title= (help)
  27. ^ Bradley, Kirsten (2014-01-19). "Aquaponics: A Brief History of This Integrated Fish & Veggies System". Milkwood: permaculture courses, skills + stories. Retrieved 2024-05-03.
  28. ^ Alba, Salvador (2022-07-13). "Dr. James Rakocy". aquaponicsunited.com. Retrieved 2024-05-03.
  29. ^ Bradley, Kirsten (2014-01-19). "Aquaponics: A Brief History of This Integrated Fish & Veggies System". Milkwood: permaculture courses, skills + stories. Retrieved 2024-05-03.
  30. ^ Fox, Bradley K.; Howerton, Robert; Tamaru, Clyde (June 2010). "Construction of Automatic Bell Siphons for Backyard Aquaponic Systems" (PDF). University of Hawaiʻi at Mānoa Department of Molecular Biosciences and Bioengineering. Archived (PDF) from the original on 16 August 2013. Retrieved 12 March 2013.
  31. ^ "Aquaponics - Integration of Hydroponics with Aquaculture". ATTRA Sustainable Agriculture Program. Archived from the original on 2019-10-03. Retrieved 2020-07-14.
  32. ^ Rharrhour, Haytam; Wariaghli, Fatima; Goddek, Simon; Sadik, Mohamed; Moujtahid, Aziz El; Nhhala, Hassan; Yahyaoui, Ahmed (2022). "Towards sustainable food productions in Morocco: Aquaponics". E3S Web of Conferences. 337: 03004. Bibcode:2022E3SWC.33703004R. doi:10.1051/e3sconf/202233703004. ISSN 2267-1242.
  33. ^ a b c d e f g h i j k l m n o p q r s t Rakocy, James E.; Masser, Michael P.; Losordo, Thomas M. (November 2006). "Recirculating aquaculture tank production systems: Aquaponics—integrating fish and plant culture" (PDF) (454). Southern Regional Aquaculture Center. Archived from the original (PDF) on September 15, 2012. Retrieved April 24, 2013. ((cite journal)): Cite journal requires |journal= (help)
  34. ^ a b c d e Diver, Steve (2006). "Aquaponics—integration of hydroponics with aquaculture" (PDF). ATTRA - National Sustainable Agriculture Information Service. National Center for Appropriate Technology. Archived (PDF) from the original on March 2, 2013. Retrieved April 24, 2013.
  35. ^ "How to build an indoor Aquaponics system". Agriculture land usa. Retrieved 2024-05-13.
  36. ^ a b c d "NMSU: Is Aquaponics Right For You?". aces.nmsu.edu. Archived from the original on 2016-01-01. Retrieved 2016-01-01.
  37. ^ a b "What Are The Easiest Plants To Grow With Aquaponics". aquaponicsideasonline.com. Archived from the original on 2016-01-03. Retrieved 2016-01-02.
  38. ^ Backyard Aquaponics. "Importance of Fish". Archived from the original on April 9, 2013. Retrieved April 24, 2013.
  39. ^ a b c d e f g h i Blidariu, Flavius; Grozea, Adrian (2011-01-01). "Increasing the Economical Efficiency and Sustainability of Indoor Fish Farming by Means of Aquaponics - Review". Scientific Papers Animal Science and Biotechnologies. 44 (2): 1–8. ISSN 2344-4576. Archived from the original on 2017-04-15.
  40. ^ a b Somerville, Christopher (2015). Small-scale aquaponic food production : integrated fish and plant farming. Food and Agriculture Organization of the United Nations. Rome. ISBN 978-92-5-108532-5. OCLC 898228105.((cite book)): CS1 maint: location missing publisher (link)
  41. ^ a b "Methods of Aquaponics | Nelson & Pade, Inc". aquaponics.com. Archived from the original on 2017-04-09. Retrieved 2017-04-08.
  42. ^ Lennard, Wilson A.; Leonard, Brian V. (December 2006). "A Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System". Aquaculture International. 14 (6): 539–550. Bibcode:2006AqInt..14..539L. doi:10.1007/s10499-006-9053-2. S2CID 23176587.
  43. ^ Rakocy, James E.; Shultz, R. Charlie; Bailey, Donald S.; Thoman, Eric S. (2004). M.A. Nichols (ed.). "Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system" (PDF). Acta Horticulturae (648). International Society for Horticultural Science: 63–69. doi:10.17660/ActaHortic.2004.648.8. Archived from the original (PDF) on June 12, 2013. Retrieved April 24, 2013.
  44. ^ Deer, Che; Hu, Bizhen; Dunn, Bruce; Dusci, Joshua (2021-10-15). "Nitrification and Maintenance in Media Bed Aquaponics - Oklahoma State University". extension.okstate.edu. Retrieved 2022-12-01.
  45. ^ Sallenave, Rossana. "Important Water Quality Parameters in Aquaponics Systems | New Mexico State University - BE BOLD. Shape the Future". pubs.nmsu.edu. Retrieved 2022-12-01.
  46. ^ Aquaponics (Video). Purdue University. 2011. Archived from the original on 2013-03-06. Retrieved 2013-05-23.
  47. ^ "Archived copy" (PDF). Archived (PDF) from the original on 2017-11-07. Retrieved 2017-11-01.((cite web)): CS1 maint: archived copy as title (link)
  48. ^ Rogosa, Eli. "Organic Aquaponics". Archived from the original on May 29, 2013. Retrieved April 24, 2013.
  49. ^ Amadori, Michael (July 5, 2011). "Fish, Lettuce and Food Waste Put New Spin on Aquaponics". Newswise. Archived from the original on February 26, 2013. Retrieved April 24, 2013.
  50. ^ Royte, Elizabeth (July 5, 2009). "Street Farmer". The New York Times Company. Archived from the original on 6 December 2011. Retrieved 8 March 2011.
  51. ^ Archived at Ghostarchive and the Wayback Machine: "How to Manage Plant Nutrients in Aquaponics". YouTube. 4 September 2013.
  52. ^ Lunda, Roman; Roy, Koushik; Másílko, Jan; Mráz, Jan (September 2019). "Understanding nutrient throughput of operational RAS farm effluents to support semi-commercial aquaponics: Easy upgrade possible beyond controversies". Journal of Environmental Management. 245: 255–263. Bibcode:2019JEnvM.245..255L. doi:10.1016/j.jenvman.2019.05.130. PMID 31158677. S2CID 174808814.
  53. ^ Rakocy, James (November 2006). "Recirculating Aquaculture Tank Production Systems: Aquaponics—Integrating Fish and Plant Culture" (PDF). SRAC. Archived from the original (PDF) on 2017-05-17. Retrieved 2017-04-09.
  54. ^ "Aquaponics: Hybrid between aquaculture and hydroponics". November 2017. Archived from the original on 2017-11-07.
  55. ^ Hygnstrom, Jan R.; Skipton, Sharon O.; Woldt, Wayne. "Residential Onsite Wastewater Treatment: Constructed Wetlands for Effluent Treatment" (PDF). Archived from the original (PDF) on July 14, 2014. Retrieved June 15, 2014.
  56. ^ Ashish (2023-12-21). "How to build an indoor Aquaponics system ~ Agriculture". How to build an indoor Aquaponics system ~ Agriculture. Retrieved 2023-12-31.
  57. ^ Folorunso, Ewumi Azeez; Roy, Koushik; Gebauer, Radek; Bohatá, Andrea; Mraz, Jan (2020). "Integrated pest and disease management in aquaponics: A metadata-based review". Reviews in Aquaculture. 13 (2): 971–995. doi:10.1111/raq.12508. S2CID 224852600.
  58. ^ Menon, Rashmi; Sahana, G.V.; Shruthi, V. "Small Scale Aquaponic System". International Journal of Agriculture and Food Science Technology. 4: 941–946.
  59. ^ Benoît, Stalport; Frédéric, Lebeau; Haissam, Jijakli (2018). "Smart Aquaponics: development of intelligent management tools for aquaponic systems adapted to professionals, urban communities and education". hdl:2268/221709. ((cite journal)): Cite journal requires |journal= (help)
  60. ^ Simon, Matt (November 20, 2017). "The Hydroponic, Robotic Future of Farming in Greenhouses". WIRED. Retrieved 2018-11-22.
  61. ^ K.C., Brown (September 1, 2017). "Walker celebrates opening of aquaponics facility". WEAU News. Retrieved 2018-11-22.
  62. ^ Richard E. Thompson. (2015). Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture, Volume 435, 2015, Pages 67-74,
  63. ^ Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in Aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/j.agwat.2016.10.013
  64. ^ AlShrouf, A. (2017). Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. ARSJETS Journal , 27(1). https://doi.org/2313-4402
  65. ^ The Urban Farming Company (https://www.smartcitiesdive.com/ex/sustainablecitiescollective/urban-farming-co-takes-aquaponic-farming-europe-s-rooftops/442951/)
  66. ^ The European Aquaponics Association (https://aquaponicsassociation.org)
  67. ^ EcoPonics ((https://ec.europa.eu/environment/eco-innovation/projects/en/projects/ecoponics))
  68. ^ Some important talks on pest management (বালাই দমন সংক্রান্ত জরুরি কিছু কথা Archived 2013-12-13 at the Wayback Machine). In Bengali. The Sangbad, 29 January 2011
  69. ^ "এ্যাকোয়াপনিক্স প্রযুক্তিতে মাছ-সবজি চাষ" [Fish & vegetable culture through aquaponics technology]. The Daily Janakantha (in Bengali). January 28, 2012. Archived from the original on April 11, 2013. Retrieved October 1, 2019.
  70. ^ Innovation of a BAU researcher: "Aquaponics technology" three times production without any cost (বাকৃবি গবেষকের উদ্ভাবন 'একোয়াপনিক্স প্রযুক্তি' খরচ ছাড়াই উৎপাদন তিন গুণ Archived 2013-12-12 at the Wayback Machine). In Bengali. The Daily Kalerkantho, January 25, 2011
  71. ^ Qandil, Ala (24 January 2015). "Rooftop gardens provide 'answer for Gaza'". Al Jazeera. Archived from the original on 24 February 2015. Retrieved 24 January 2015.
  72. ^ "Services | Aquaponics In India". Aquaponics In India. Archived from the original on 2017-04-18. Retrieved 2017-04-17.
  73. ^ "Dakota College at Bottineau - Horticulture". Archived from the original on 2023-01-11. Retrieved 2023-01-11.
  74. ^ Hernandez, Elizabeth (2014-10-19). "Denver jail sustainably growing food through aquaponics". The Denver Post. Archived from the original on 2017-04-18. Retrieved 2017-04-17.
  75. ^ "Idealists in Action: VertiFarms". blog.en.idealist.org. Archived from the original on 2017-04-18. Retrieved 2017-04-17.
  76. ^ a b "Our Commercial Aquaponics Students - Friendly Aquaponics". Friendly Aquaponics. Archived from the original on 2017-04-17. Retrieved 2017-04-17.
  77. ^ Potenza, Alessandra (2016-06-15). "In a Brooklyn aquaponic farm, basil grown with tilapia is the future". The Verge. Archived from the original on 2017-04-18. Retrieved 2017-04-17.
  78. ^ Magee, Christine (2015-09-01). "Edenworks Is Building The Future Of Food On Urban Rooftops". TechCrunch. Archived from the original on 2017-04-19. Retrieved 2017-04-17.
  79. ^ Harris, L. Kasimu (19 December 2011). "Aquaponics being taught in Vietnamese community". The Louisiana Weekly. Archived from the original on 22 January 2012. Retrieved 13 February 2012.
  80. ^ "Mission | Whispering Roots". whisperingroots.org. Archived from the original on 2015-10-18. Retrieved 2016-01-02.
  81. ^ Lee, Cheril. "Kids and Collaboration". Archived from the original on 11 December 2013. Retrieved 25 August 2013.
  82. ^ Weber, Christopher (May 25, 2011). "Aquaponic farming operations taking root". Chicago Tribune. Archived from the original on June 11, 2013. Retrieved June 9, 2013.
  83. ^ Springworks Farm (https://www.springworksfarm.com/about-us))
  84. ^ "Fish farming in a high-rise world". BBC News US & Canada. April 29, 2012. Archived from the original on January 30, 2013. Retrieved April 24, 2013.
  85. ^ "Aquaponics systems that makes you self sustained for food". Small Garden Ideas. Archived from the original on 2016-01-02. Retrieved 2016-01-02.
  86. ^ Goldstein, Harry (June 3, 2013). "The Indoor Aquaponics Farm". IEEE Spectrum. Archived from the original on June 8, 2013. Retrieved June 3, 2013.