500 day HAB/MPLM with a cryogenic propulsion stage

The Deep Space Habitat (DSH) is a series of concepts explored between 2012 and 2018 by NASA for methods to support crewed exploration missions to the Moon, asteroids, and eventually Mars.[1] Some of these concepts were eventually used in the Lunar Gateway program.

Overview

Since 2012, numerous iterations of large lunar and Mars transport habitats have been conceived in previous studies to be launched with the Space Launch System (SLS),[2][3] and are intended to also be compatible with the Orion capsule. Variations of the designs would be used for the Lunar Gateway and the Deep Space Transport.[2]

Early preliminary concepts considered 60-day and 500-day mission configurations, composed of International Space Station-derived hardware, the Orion crew capsule and various support craft.[4] The habitat would be equipped with at least one International Docking System Standard (IDSS) docking system. Developing a deep space habitat would allow a crew to live and work safely in space for about one year on missions to explore cislunar space, Mars, and some near-Earth asteroids.

In 2015, NASA funded studies for several types of deep space habitat concepts under the Next Space Technologies for Exploration Partnerships (NextSTEP).[5] Lockheed Martin, the main contractor of the Orion capsule, also produced in 2018 a Deep Space Habitat concept.[6] These concept studies were intended to help NASA decide on a final design for the habitat element for the Lunar Gateway.[7]

Configurations

ISS-derived Deep Space Habitat HAB/MPLM
ISS-derived Deep Space Habitat MPLM/Node1

HAB/MPLM

MPLM stands for Multi-Purpose Logistics Module[6]

MPLM/Node 1

Suggested support craft

MMSEV

See also

References

  1. ^ Deep Space Habitat module concepts outlined for BEO exploration. Chris Gebhardt, NASA Spaceflight. 30 March 2012.
  2. ^ a b Research Possibilities beyond Deep Space Gateway. Deep Space Gateway Science Workshop 2018 (LPI Contrib. No. 2063) D. V. Smitherman, D. H. Needham, and R. Lewis. NASA.
  3. ^ Deep Space Habitat Configurations (Based on International Space Station Systems) Archived 2015-07-15 at the Wayback Machine, AES Habitation Project, March 2012.
  4. ^ a b c d "Delving Deeper into NASA's DSH configurations and support craft". nasaspaceflight.com. 3 April 2012.
  5. ^ Doug Messier on (August 11, 2016). "A Closer Look at NextSTEP-2 Deep Space Habitat Concepts". Parabolic Arc. Retrieved August 14, 2016.
  6. ^ a b Lockheed Martin Shows off its new Space Habitat. Matt Williams, Universe Today. 21 August 2018.
  7. ^ Some snark (and details!) about NASA's proposed lunar space station. Jason Davis, The Planetary Society. February 26, 2018.
  8. ^ a b David Smitherman; Brand N. Griffin (August 4, 2014). Habitat Concepts for Deep Space Exploration (PDF) (Report). NASA. Retrieved September 26, 2023.
  9. ^ "Space Exploration Vehicle Concept" (PDF). NASA. Retrieved April 16, 2018.
  10. ^ "NASA FlexCraft 2015 - Marshall Space Flight Center". www.youtube.com. MoonlightFoxTV. Retrieved April 16, 2018.
  11. ^ Gebhardt, Chris (April 2, 2012). "Delving Deeper into NASA's DSH configurations and support craft". NASASpaceflight. Retrieved September 26, 2023.
  12. ^ Griffin, Brand N. (March 15, 2012). Benefits of a Single-Person Spacecraft for Weightless Operations. 13th ASCE Earth and Space Conference; 15-18 Apr. 2012; Pasadena, CA; United States. 42nd International Conference on Environmental Systems; San Diego, CA. United States. hdl:2060/20120013602. 20120013602.