This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (April 2015) (Learn how and when to remove this message)

In mathematics, the equivariant algebraic K-theory is an algebraic K-theory associated to the category of equivariant coherent sheaves on an algebraic scheme X with action of a linear algebraic group G, via Quillen's Q-construction; thus, by definition,

In particular, is the Grothendieck group of . The theory was developed by R. W. Thomason in 1980s.[1] Specifically, he proved equivariant analogs of fundamental theorems such as the localization theorem.

Equivalently, may be defined as the of the category of coherent sheaves on the quotient stack .[2][3] (Hence, the equivariant K-theory is a specific case of the K-theory of a stack.)

A version of the Lefschetz fixed-point theorem holds in the setting of equivariant (algebraic) K-theory.[4]

Fundamental theorems

Let X be an equivariant algebraic scheme.

Localization theorem — Given a closed immersion of equivariant algebraic schemes and an open immersion , there is a long exact sequence of groups

Examples

One of the fundamental examples of equivariant K-theory groups are the equivariant K-groups of -equivariant coherent sheaves on a points, so . Since is equivalent to the category of finite-dimensional representations of . Then, the Grothendieck group of , denoted is .[5]

Torus ring

Given an algebraic torus a finite-dimensional representation is given by a direct sum of -dimensional -modules called the weights of .[6] There is an explicit isomorphism between and given by sending to its associated character.[7]

See also

References

  1. ^ Charles A. Weibel, Robert W. Thomason (1952–1995).
  2. ^ Adem, Alejandro; Ruan, Yongbin (June 2003). "Twisted Orbifold K-Theory". Communications in Mathematical Physics. 237 (3): 533–556. arXiv:math/0107168. Bibcode:2003CMaPh.237..533A. doi:10.1007/s00220-003-0849-x. ISSN 0010-3616. S2CID 12059533.
  3. ^ Krishna, Amalendu; Ravi, Charanya (2017-08-02). "Algebraic K-theory of quotient stacks". arXiv:1509.05147 [math.AG].
  4. ^ Baum, Fulton & Quart 1979
  5. ^ Chriss, Neil; Ginzburg, Neil. Representation theory and complex geometry. pp. 243–244.
  6. ^ For there is a map sending . Since there is an induced representation of weight . See Algebraic torus for more info.
  7. ^ Okounkov, Andrei (2017-01-03). "Lectures on K-theoretic computations in enumerative geometry". p. 13. arXiv:1512.07363 [math.AG].

Further reading