In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In its most basic form, the theorem asserts that given a field extension E/F that is finite and Galois, there is a one-to-one correspondence between its intermediate fields and subgroups of its Galois group. (Intermediate fields are fields K satisfying FKE; they are also called subextensions of E/F.)

Explicit description of the correspondence

For finite extensions, the correspondence can be described explicitly as follows.

The fundamental theorem says that this correspondence is a one-to-one correspondence if (and only if) E/F is a Galois extension. For example, the topmost field E corresponds to the trivial subgroup of Gal(E/F), and the base field F corresponds to the whole group Gal(E/F).

The notation Gal(E/F) is only used for Galois extensions. If E/F is Galois, then Gal(E/F) = Aut(E/F). If E/F is not Galois, then the "correspondence" gives only an injective (but not surjective) map from to , and a surjective (but not injective) map in the reverse direction. In particular, if E/F is not Galois, then F is not the fixed field of any subgroup of Aut(E/F).

Properties of the correspondence

The correspondence has the following useful properties.

Example 1

Lattice of subgroups and subfields

Consider the field

Since K is constructed from the base field by adjoining 2, then 3, each element of K can be written as:

Its Galois group comprises the automorphisms of K which fix a. Such automorphisms must send 2 to 2 or 2, and send 3 to 3 or 3, since they permute the roots of any irreducible polynomial. Suppose that f exchanges 2 and 2, so

and g exchanges 3 and 3, so

These are clearly automorphisms of K, respecting its addition and multiplication. There is also the identity automorphism e which fixes each element, and the composition of f and g which changes the signs on both radicals:

Since the order of the Galois group is equal to the degree of the field extension, , there can be no further automorphisms:

which is isomorphic to the Klein four-group. Its five subgroups correspond to the fields intermediate between the base and the extension K.

Example 2

Lattice of subgroups and subfields

The following is the simplest case where the Galois group is not abelian.

Consider the splitting field K of the irreducible polynomial over ; that is, where θ is a cube root of 2, and ω is a cube root of 1 (but not 1 itself). If we consider K inside the complex numbers, we may take , the real cube root of 2, and Since ω has minimal polynomial , the extension has degree:

with -basis as in the previous example. Therefore the Galois group has six elements, determined by all permutations of the three roots of :

Since there are only 3! = 6 such permutations, G must be isomorphic to the symmetric group of all permutations of three objects. The group can be generated by two automorphisms f and g defined by:

and , obeying the relations . Their effect as permutations of is (in cycle notation): . Also, g can be considered as the complex conjugation mapping.

The subgroups of G and corresponding subfields are as follows:

Example 3

Let be the field of rational functions in the indeterminate λ, and consider the group of automorphisms:

here we denote an automorphism by its value , so that . This group is isomorphic to (see: six cross-ratios). Let be the fixed field of , so that .

If is a subgroup of , then the coefficients of the polynomial

generate the fixed field of . The Galois correspondence implies that every subfield of can be constructed this way. For example, for , the fixed field is and if then the fixed field is . The fixed field of is the base field where j is the j-invariant written in terms of the modular lambda function:

Similar examples can be constructed for each of the symmetry groups of the platonic solids as these also have faithful actions on the projective line and hence on .

Applications

The theorem classifies the intermediate fields of E/F in terms of group theory. This translation between intermediate fields and subgroups is key to showing that the general quintic equation is not solvable by radicals (see Abel–Ruffini theorem). One first determines the Galois groups of radical extensions (extensions of the form F(α) where α is an n-th root of some element of F), and then uses the fundamental theorem to show that solvable extensions correspond to solvable groups.

Theories such as Kummer theory and class field theory are predicated on the fundamental theorem.

Infinite case

Given an infinite algebraic extension we can still define it to be Galois if it is normal and separable. The problem that one encounters in the infinite case is that the bijection in the fundamental theorem does not hold as we get too many subgroups generally. More precisely if we just take every subgroup we can in general find two different subgroups that fix the same intermediate field. Therefore we amend this by introducing a topology on the Galois group.

Let be a Galois extension (possibly infinite) and let be the Galois group of the extension. Let

be the set of the Galois groups of all finite intermediate Galois extensions. Note that for all we can define the maps by . We then define the Krull topology on to be weakest topology such that for all the maps are continuous, where we endow each with the discrete topology. Stated differently as an inverse limit of topological groups (where again each is endowed with the discrete topology). This makes a profinite group (in fact every profinite group can be realised as the Galois group of a Galois extension, see for example [1]). Note that when is finite, the Krull topology is the discrete topology.

Now that we have defined a topology on the Galois group we can restate the fundamental theorem for infinite Galois extensions.

Let denote the set of all intermediate field extensions of and let denote the set of all closed subgroups of endowed with the Krull topology. Then there exists a bijection between and given by the map

defined by and the map

defined by . One important thing one needs to check is that is a well-defined map, that is that is a closed subgroup of for all intermediate fields . This is proved in Ribes–Zalesskii, Theorem 2.11.3. [1]

See also

References

  1. ^ a b Ribes, Zalesskii (2010). Profinite groups. Springer. ISBN 978-3-642-01641-7.

Further reading