Behavior of a neural network simplifies as it becomes infinitely wide. Left: a Bayesian neural network with two hidden layers, transforming a 3-dimensional input (bottom) into a two-dimensional output (top). Right: output probability density function induced by the random weights of the network. Video: as the width of the network increases, the output distribution simplifies, ultimately converging to a Neural network Gaussian process in the infinite width limit.

Artificial neural networks are a class of models used in machine learning, and inspired by biological neural networks. They are the core component of modern deep learning algorithms. Computation in artificial neural networks is usually organized into sequential layers of artificial neurons. The number of neurons in a layer is called the layer width. Theoretical analysis of artificial neural networks sometimes considers the limiting case that layer width becomes large or infinite. This limit enables simple analytic statements to be made about neural network predictions, training dynamics, generalization, and loss surfaces. This wide layer limit is also of practical interest, since finite width neural networks often perform strictly better as layer width is increased.[1][2][3][4][5][6]

Theoretical approaches based on a large width limit

References

  1. ^ Novak, Roman; Bahri, Yasaman; Abolafia, Daniel A.; Pennington, Jeffrey; Sohl-Dickstein, Jascha (2018-02-15). "Sensitivity and Generalization in Neural Networks: an Empirical Study". International Conference on Learning Representations. arXiv:1802.08760. Bibcode:2018arXiv180208760N.
  2. ^ Canziani, Alfredo; Paszke, Adam; Culurciello, Eugenio (2016-11-04). "An Analysis of Deep Neural Network Models for Practical Applications". arXiv:1605.07678. Bibcode:2016arXiv160507678C. ((cite journal)): Cite journal requires |journal= (help)
  3. ^ Novak, Roman; Xiao, Lechao; Lee, Jaehoon; Bahri, Yasaman; Yang, Greg; Abolafia, Dan; Pennington, Jeffrey; Sohl-Dickstein, Jascha (2018). "Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes". International Conference on Learning Representations. arXiv:1810.05148. Bibcode:2018arXiv181005148N.
  4. ^ Neyshabur, Behnam; Li, Zhiyuan; Bhojanapalli, Srinadh; LeCun, Yann; Srebro, Nathan (2019). "Towards understanding the role of over-parametrization in generalization of neural networks". International Conference on Learning Representations. arXiv:1805.12076. Bibcode:2018arXiv180512076N.
  5. ^ Lawrence, Steve; Giles, C. Lee; Tsoi, Ah Chung (1996). "What size neural network gives optimal generalization? convergence properties of backpropagation". CiteSeerX 10.1.1.125.6019. ((cite journal)): Cite journal requires |journal= (help)
  6. ^ Bartlett, P.L. (1998). "The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network". IEEE Transactions on Information Theory. 44 (2): 525–536. doi:10.1109/18.661502. ISSN 1557-9654.
  7. ^ Neal, Radford M. (1996), "Priors for Infinite Networks", Bayesian Learning for Neural Networks, Lecture Notes in Statistics, vol. 118, Springer New York, pp. 29–53, doi:10.1007/978-1-4612-0745-0_2, ISBN 978-0-387-94724-2
  8. ^ Lee, Jaehoon; Bahri, Yasaman; Novak, Roman; Schoenholz, Samuel S.; Pennington, Jeffrey; Sohl-Dickstein, Jascha (2017). "Deep Neural Networks as Gaussian Processes". International Conference on Learning Representations. arXiv:1711.00165. Bibcode:2017arXiv171100165L.
  9. ^ G. de G. Matthews, Alexander; Rowland, Mark; Hron, Jiri; Turner, Richard E.; Ghahramani, Zoubin (2017). "Gaussian Process Behaviour in Wide Deep Neural Networks". International Conference on Learning Representations. arXiv:1804.11271. Bibcode:2018arXiv180411271M.
  10. ^ Hron, Jiri; Bahri, Yasaman; Novak, Roman; Pennington, Jeffrey; Sohl-Dickstein, Jascha (2020). "Exact posterior distributions of wide Bayesian neural networks". ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning. arXiv:2006.10541.
  11. ^ Schoenholz, Samuel S.; Gilmer, Justin; Ganguli, Surya; Sohl-Dickstein, Jascha (2016). "Deep information propagation". International Conference on Learning Representations. arXiv:1611.01232.
  12. ^ Jacot, Arthur; Gabriel, Franck; Hongler, Clement (2018). "Neural tangent kernel: Convergence and generalization in neural networks". Advances in Neural Information Processing Systems. arXiv:1806.07572.
  13. ^ Lee, Jaehoon; Xiao, Lechao; Schoenholz, Samuel S.; Bahri, Yasaman; Novak, Roman; Sohl-Dickstein, Jascha; Pennington, Jeffrey (2020). "Wide neural networks of any depth evolve as linear models under gradient descent". Journal of Statistical Mechanics: Theory and Experiment. 2020 (12): 124002. arXiv:1902.06720. Bibcode:2020JSMTE2020l4002L. doi:10.1088/1742-5468/abc62b. S2CID 62841516.
  14. ^ Mei, Song Montanari, Andrea Nguyen, Phan-Minh (2018-04-18). A Mean Field View of the Landscape of Two-Layers Neural Networks. OCLC 1106295873.((cite book)): CS1 maint: multiple names: authors list (link)
  15. ^ Nguyen, Phan-Minh; Pham, Huy Tuan (2020). "A Rigorous Framework for the Mean Field Limit of Multilayer Neural Networks". arXiv:2001.11443 [cs.LG].
  16. ^ Lewkowycz, Aitor; Bahri, Yasaman; Dyer, Ethan; Sohl-Dickstein, Jascha; Gur-Ari, Guy (2020). "The large learning rate phase of deep learning: the catapult mechanism". arXiv:2003.02218 [stat.ML].