In mathematics, the lower limit topology or right half-open interval topology is a topology defined on , the set of real numbers; it is different from the standard topology on (generated by the open intervals) and has a number of interesting properties. It is the topology generated by the basis of all half-open intervals [a,b), where a and b are real numbers.

The resulting topological space is called the Sorgenfrey line after Robert Sorgenfrey or the arrow and is sometimes written . Like the Cantor set and the long line, the Sorgenfrey line often serves as a useful counterexample to many otherwise plausible-sounding conjectures in general topology. The product of with itself is also a useful counterexample, known as the Sorgenfrey plane.

In complete analogy, one can also define the upper limit topology, or left half-open interval topology.

Properties

Since is compact, this cover has a finite subcover, and hence there exists a real number such that the interval contains no point of apart from . This is true for all . Now choose a rational number . Since the intervals , parametrized by , are pairwise disjoint, the function is injective, and so is at most countable. It could be observed that a subset is compact if and only if it bounded from below and is well-ordered when endowed with the order "" (which in particular implies that it is bounded from above).

See also

References

  1. ^ "general topology - The Sorgenfrey line is a Baire Space". Mathematics Stack Exchange.
  2. ^ Adam Emeryk, Władysław Kulpa. The Sorgenfrey line has no connected compactification. Comm. Math. Univ. Carolinae 18 (1977), 483–487.