This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (April 2012) (Learn how and when to remove this message)

The timeline of quantum mechanics is a list of key events in the history of quantum mechanics, quantum field theories and quantum chemistry.

19th century

Image of Becquerel's photographic plate which has been fogged by exposure to radiation from a uranium salt. The shadow of a metal Maltese Cross placed between the plate and the uranium salt is clearly visible.

20th century

1900–1909

Einstein, in 1905, when he wrote the Annus Mirabilis papers

1910–1919

A schematic diagram of the apparatus for Millikan's refined oil drop experiment

1920–1929

A plaque at the University of Frankfurt commemorating the Stern–Gerlach experiment

1930–1939

Electron microscope constructed by Ernst Ruska in 1933

1940–1949

A Feynman diagram showing the radiation of a gluon when an electron and positron are annihilated

1950–1959

1960–1969

The baryon decuplet of the Eightfold Way proposed by Murray Gell-Mann in 1962. The
Ω
particle at the bottom had not yet been observed at the time, but a particle closely matching these predictions was discovered[48] by a particle accelerator group at Brookhaven, proving Gell-Mann's theory.

1971–1979

1980–1999

21st century

Graphene is a planar atomic-scale honeycomb lattice made of carbon atoms which exhibits unusual and interesting quantum properties.
This section needs to be updated. Please help update this article to reflect recent events or newly available information. (April 2024)

See also

References

  1. ^ a b c d e f g h i j k l m n o p q r Peacock 2008, pp. 175–183
  2. ^ Becquerel, Henri (1896). "Sur les radiations émises par phosphorescence". Comptes Rendus. 122: 420–421.
  3. ^ "Milestone 1 : Nature Milestones in Spin". www.nature.com. Retrieved 2018-09-09.
  4. ^ Marie Curie and the Science of Radioactivity: Research Breakthroughs (1897–1904) Archived 2015-11-17 at the Wayback Machine. Aip.org. Retrieved on 2012-05-17.
  5. ^ Histories of the Electron: The Birth of Microphysics edited by Jed Z. Buchwald, Andrew Warwick
  6. ^ Larmor, Joseph (1897), "On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media" , Philosophical Transactions of the Royal Society, 190: 205–300, Bibcode:1897RSPTA.190..205L, doi:10.1098/rsta.1897.0020
  7. ^ Larmor, Joseph (1897), "On a Dynamical Theory of the Electric and Luminiferous Medium, Part 3, Relations with material media" , Philosophical Transactions of the Royal Society, 190: 205–300, Bibcode:1897RSPTA.190..205L, doi:10.1098/rsta.1897.0020 Quotes from one of Larmor’s voluminous work include: “while atoms of matter are in whole or in part aggregations of electrons in stable orbital motion. In particular, this scheme provides a consistent foundation for the electrodynamic laws, and agrees with the actual relations between radiation and moving matter.”
    • “A formula for optical dispersion was obtained in § 11 of the second part of this memoir, on the simple hypothesis that the electric polarization of the molecules vibrated as a whole in unison with the electric field of the radiation.”
    • “…that of the transmission of radiation across a medium permeated by molecules, each consisting of a system of electrons in steady orbital motion, and each capable of free oscillations about the steady state of motion with definite free periods analogous to those of the planetary inequalities of the Solar System;”
    • “‘A’ will be a positive electron in the medium, and ‘B’ will be the complementary negative one…We shall thus have created two permanent conjugate electrons A and B ; each of them can be moved about through the medium, but they will both persist until they are destroyed by an extraneous process the reverse of that by which they are formed.”
  8. ^ Soddy, Frederick (December 12, 1922). "The origins of the conceptions of isotopes" (PDF). Nobel Lecture in Chemistry. Retrieved 25 April 2012.
  9. ^ Ernest Rutherford, Baron Rutherford of Nelson, of Cambridge. Encyclopædia Britannica on-line. Retrieved on 2012-05-17.
  10. ^ The Nobel Prize in Chemistry 1908: Ernest Rutherford. nobelprize.org
  11. ^ J. W. Nicholson, Month. Not. Roy. Astr. Soc. lxxii. pp. 49,130, 677, 693, 729 (1912).
  12. ^ The Atomic Theory of John William Nicholson, Russell McCormmach, Archive for History of Exact Sciences, Vol. 3, No. 2 (25.8.1966), pp. 160-184 (25 pages), Springer.
  13. ^ On the Constitution of Atoms and Molecules Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, p. 1-25
  14. ^ McCormmach, Russell (Spring 1967). "Henri Poincaré and the Quantum Theory". Isis. 58 (1): 37–55. doi:10.1086/350182. S2CID 120934561.
  15. ^ Irons, F. E. (August 2001). "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms". American Journal of Physics. 69 (8): 879–884. Bibcode:2001AmJPh..69..879I. doi:10.1119/1.1356056.
  16. ^ On the Constitution of Atoms and Molecules, Niels Bohr, Philosophical Magazine, Series 6, Volume 26 July 1913, p. 1-25
  17. ^ Procopiu, Ştefan (1913). "Determining the Molecular Magnetic Moment by M. Planck's Quantum Theory". Bulletin Scientifique de l'Académie Roumaine de Sciences. 1: 151.
  18. ^ Pais, Abraham (1995). "Introducing Atoms and Their Nuclei". In Brown, Laurie M.; Pais, Abraham; Pippard, Brian (eds.). Twentieth Century Physics. Vol. 1. American Institute of Physics Press. p. 89. ISBN 9780750303101. Now the beauty of Franck and Hertz's work lies not only in the measurement of the energy loss E2-E1 of the impinging electron, but they also observed that, when the energy of that electron exceeds 4.9 eV, mercury begins to emit ultraviolet light of a definite frequency ν as defined in the above formula. Thereby they gave (unwittingly at first) the first direct experimental proof of the Bohr relation!
  19. ^ P. S. Epstein, Zur Theorie des Starkeffektes, Annalen der Physik, vol. 50, pp. 489-520 (1916)
  20. ^ K. Schwarzschild, Sitzungsberichten der Kgl. Preuss. Akad. d. Wiss. April 1916, p. 548
  21. ^ Lewis, G. N. (1916), "The Atom and the Molecule", J. Am. Chem. Soc., 38 (4): 762–85, doi:10.1021/ja02261a002, S2CID 95865413
  22. ^ H. A. Kramers, Roy. Danish Academy, Intensities of Spectral Lines. On the Application of the Quantum Theory to the Problem of Relative Intensities of the Components of the Fine Structure and of the Stark Effect of the Lines of the Hydrogen Spectrum, p. 287 (1919);Über den Einfluß eines elektrischen Feldes auf die Feinstruktur der Wasserstofflinien (On the influence of an electric field on the fine structure of hydrogen lines), Zeitschrift für Physik, vol. 3, pp. 199–223 (1920)
  23. ^ Lewis, G.N. (1926). "The conservation of photons". Nature. 118 (2981): 874–875. Bibcode:1926Natur.118..874L. doi:10.1038/118874a0. S2CID 4110026.
  24. ^ P. S. Epstein, "The Stark Effect from the Point of View of Schroedinger's Quantum Theory", Physical Review, vol 28, pp. 695–710 (1926)
  25. ^ John von Neumann. 1932. The Mathematical Foundations of Quantum Mechanics., Princeton University Press: Princeton, New Jersey, reprinted in 1955, 1971 and 1983 editions
  26. ^ Van Hove, Léon (1958). "Von Neumann's Contributions to Quantum Theory". Bulletin of the American Mathematical Society. 64 (3): 95–100. doi:10.1090/s0002-9904-1958-10206-2.
  27. ^ Peter, F.; Weyl, H. (1927). "Die Vollständigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe". Math. Ann. 97: 737–755. doi:10.1007/BF01447892. S2CID 120013521.
  28. ^ Brauer, Richard; Weyl, Hermann (1935). "Spinors in n dimensions". American Journal of Mathematics. 57 (2): 425–449. doi:10.2307/2371218. JSTOR 2371218.
  29. ^ Frédéric Joliot-Curie (December 12, 1935). "Chemical evidence of the transmutation of elements" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  30. ^ Einstein A, Podolsky B, Rosen N; Podolsky; Rosen (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Phys. Rev. 47 (10): 777–780. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777.((cite journal)): CS1 maint: multiple names: authors list (link)
  31. ^ Birkhoff, Garrett & von Neumann, J. (1936). "The Logic of Quantum Mechanics". Annals of Mathematics. 37 (4): 823–843. doi:10.2307/1968621. JSTOR 1968621.
  32. ^ Omnès, Roland (8 March 1999). Understanding Quantum Mechanics. Princeton University Press. ISBN 978-0-691-00435-8. Retrieved 17 May 2012.
  33. ^ Dalla Chiara, M. L.; Giuntini, R. (1994). "Unsharp quantum logics". Foundations of Physics. 24 (8): 1161–1177. Bibcode:1994FoPh...24.1161D. doi:10.1007/BF02057862. S2CID 122872424.
  34. ^ Georgescu, G. (2006). "N-valued Logics and Łukasiewicz-Moisil Algebras". Axiomathes. 16 (1–2): 123–136. doi:10.1007/s10516-005-4145-6. S2CID 121264473.
  35. ^ H. Jahn and E. Teller (1937). "Stability of Polyatomic Molecules in Degenerate Electronic States. I. Orbital Degeneracy". Proceedings of the Royal Society A. 161 (905): 220–235. Bibcode:1937RSPSA.161..220J. doi:10.1098/rspa.1937.0142.
  36. ^ Dyson, F. (1949). "The S Matrix in Quantum Electrodynamics". Phys. Rev. 75 (11): 1736–1755. Bibcode:1949PhRv...75.1736D. doi:10.1103/PhysRev.75.1736.
  37. ^ Stix, Gary (October 1999). "Infamy and honor at the Atomic Café: Edward Teller has no regrets about his contentious career". Scientific American: 42–43. Archived from the original on 2012-10-18. Retrieved 25 April 2012.
  38. ^ Hans A. Bethe (May 28, 1952). MEMORANDUM ON THE HISTORY OF THERMONUCLEAR PROGRAM (Report). Reconstructed version from only partially declassified documents, with certain words deliberately deleted.
  39. ^ Bloch, F.; Hansen, W.; Packard, Martin (1946). "Nuclear Induction". Physical Review. 69 (3–4): 127. Bibcode:1946PhRv...69..127B. doi:10.1103/PhysRev.69.127.
  40. ^ Bloch, F.; Jeffries, C. (1950). "A Direct Determination of the Magnetic Moment of the Proton in Nuclear Magnetons". Physical Review. 80 (2): 305–306. Bibcode:1950PhRv...80..305B. doi:10.1103/PhysRev.80.305.
  41. ^ Bloch, F. (1946). "Nuclear Induction". Physical Review. 70 (7–8): 460–474. Bibcode:1946PhRv...70..460B. doi:10.1103/PhysRev.70.460.
  42. ^ Gutowsky, H. S.; Kistiakowsky, G. B.; Pake, G. E.; Purcell, E. M. (1949). "Structural Investigations by Means of Nuclear Magnetism. I. Rigid Crystal Lattices". The Journal of Chemical Physics. 17 (10): 972. Bibcode:1949JChPh..17..972G. doi:10.1063/1.1747097.
  43. ^ Gardner, J.; Purcell, E. (1949). "A Precise Determination of the Proton Magnetic Moment in Bohr Magnetons". Physical Review. 76 (8): 1262–1263. Bibcode:1949PhRv...76.1262G. doi:10.1103/PhysRev.76.1262.2.
  44. ^ Carver, T. R.; Slichter, C. P. (1953). "Polarization of Nuclear Spins in Metals". Physical Review. 92 (1): 212–213. Bibcode:1953PhRv...92..212C. doi:10.1103/PhysRev.92.212.2.
  45. ^ Hugh Everett Theory of the Universal Wavefunction, Thesis, Princeton University, (1956, 1973), pp 1–140
  46. ^ Everett, Hugh (1957). "Relative State Formulation of Quantum Mechanics". Reviews of Modern Physics. 29 (3): 454–462. Bibcode:1957RvMP...29..454E. doi:10.1103/RevModPhys.29.454. Archived from the original on 2011-10-27.
  47. ^ Jacek W. Hennel; Jacek Klinowski (2005). "Magic Angle Spinning: A Historical Perspective". In Jacek Klinowski (ed.). New techniques in solid-state NMR. Topics in Current Chemistry. Vol. 246. Springer. pp. 1–14. doi:10.1007/b98646. ISBN 978-3-540-22168-5. PMID 22160286. (New techniques in solid-state NMR, p. 1, at Google Books)
  48. ^ V.E. Barnes; Connolly, P.; Crennell, D.; Culwick, B.; Delaney, W.; Fowler, W.; Hagerty, P.; Hart, E.; Horwitz, N.; Hough, P.; Jensen, J.; Kopp, J.; Lai, K.; Leitner, J.; Lloyd, J.; London, G.; Morris, T.; Oren, Y.; Palmer, R.; Prodell, A.; Radojičić, D.; Rahm, D.; Richardson, C.; Samios, N.; Sanford, J.; Shutt, R.; Smith, J.; Stonehill, D.; Strand, R.; et al. (1964). "Observation of a Hyperon with Strangeness Number Three" (PDF). Physical Review Letters. 12 (8): 204–206. Bibcode:1964PhRvL..12..204B. doi:10.1103/PhysRevLett.12.204. OSTI 12491965.
  49. ^ Abragam, Anatole (1961). The Principles of Nuclear Magnetism. Oxford: Clarendon Press. OCLC 242700.
  50. ^ Brian David Josephson (December 12, 1973). "The Discovery of Tunnelling Supercurrents" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  51. ^ Maria Goeppert Mayer (December 12, 1963). "The shell model" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  52. ^ Mansfield, P; Grannell, P K (1973). "NMR 'diffraction' in solids?". Journal of Physics C: Solid State Physics. 6 (22): L422. Bibcode:1973JPhC....6L.422M. doi:10.1088/0022-3719/6/22/007. S2CID 4992859.
  53. ^ Garroway, A N; Grannell, P K; Mansfield, P (1974). "Image formation in NMR by a selective irradiative process". Journal of Physics C: Solid State Physics. 7 (24): L457. Bibcode:1974JPhC....7L.457G. doi:10.1088/0022-3719/7/24/006. S2CID 4981940.
  54. ^ Mansfield, P.; Maudsley, A. A. (1977). "Medical imaging by NMR". British Journal of Radiology. 50 (591): 188–94. doi:10.1259/0007-1285-50-591-188. PMID 849520. S2CID 26374556.
  55. ^ Mansfield, P (1977). "Multi-planar image formation using NMR spin echoes". Journal of Physics C: Solid State Physics. 10 (3): L55–L58. Bibcode:1977JPhC...10L..55M. doi:10.1088/0022-3719/10/3/004. S2CID 121696469.
  56. ^ Prigogine, Ilya (8 December 1977). "Time, Structure and Fluctuations" (PDF). Science. 201 (4358): 777–85. doi:10.1126/science.201.4358.777. PMID 17738519. S2CID 9129799. Retrieved 25 April 2012.
  57. ^ Rubinson, K.A.; Rubinson, Kenneth A.; Patterson, John (1979). "Ferromagnetic resonance and spin wave excite journals in metallic glasses". J. Phys. Chem. Solids. 40 (12): 941–950. Bibcode:1979JPCS...40..941B. doi:10.1016/0022-3697(79)90122-7.
  58. ^ Aspect, Alain; Grangier, Philippe; Roger, Gérard (1982). "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities". Physical Review Letters. 49 (2): 91–94. Bibcode:1982PhRvL..49...91A. doi:10.1103/PhysRevLett.49.91.
  59. ^ Aspect, Alain; Dalibard, Jean; Roger, Gérard (1982). "Experimental Test of Bell's Inequalities Using Time- Varying Analyzers" (PDF). Physical Review Letters. 49 (25): 1804–1807. Bibcode:1982PhRvL..49.1804A. doi:10.1103/PhysRevLett.49.1804.
  60. ^ "Physical Review Letters - Volume 28 Issue 14".
  61. ^ "The Nobel Prize in Physics 2022". NobelPrize.org. Retrieved 2024-04-20.
  62. ^ TFTR Machine Parameters. W3.pppl.gov (1996-05-10). Retrieved on 2012-05-17.
  63. ^ JET's Main Features-EFDA JET Archived 2011-11-20 at the Wayback Machine. Jet.efda.org. Retrieved on 2012-05-17.
  64. ^ European JET website Archived 2012-03-20 at the Wayback Machine. (PDF) . Retrieved on 2012-05-17.
  65. ^ Japan Atomic Energy Agency. Naka Fusion Institute Archived 2015-12-08 at the Wayback Machine
  66. ^ Fusion Plasma Research (FPR), JASEA, Naka Fusion Institute Archived 2015-12-08 at the Wayback Machine. Jt60.naka.jaea.go.jp. Retrieved on 2012-05-17.
  67. ^ Müller, KA; Bednorz, JG (1987). "The discovery of a class of high-temperature superconductors". Science. 237 (4819): 1133–9. Bibcode:1987Sci...237.1133M. doi:10.1126/science.237.4819.1133. PMID 17801637. S2CID 34578587.
  68. ^ Pont, M.; Walet, N.R.; Gavrila, M.; McCurdy, C.W. (1988). "Dichotomy of the Hydrogen Atom in Superintense, High-Frequency Laser Fields". Physical Review Letters. 61 (8): 939–942. Bibcode:1988PhRvL..61..939P. doi:10.1103/PhysRevLett.61.939. PMID 10039473.
  69. ^ Pont, M.; Walet, N.; Gavrila, M. (1990). "Radiative distortion of the hydrogen atom in superintense, high-frequency fields of linear polarization". Physical Review A. 41 (1): 477–494. Bibcode:1990PhRvA..41..477P. doi:10.1103/PhysRevA.41.477. PMID 9902891.
  70. ^ Mihai Gavrila: Atomic Structure and Decay in High-Frequency Fields, in Atoms in Intense Laser Fields, ed. M. Gavrila, Academic Press, San Diego, 1992, pp. 435–510. ISBN 0-12-003901-X
  71. ^ Muller, H.; Gavrila, M. (1993). "Light-Induced Excited States in H". Physical Review Letters. 71 (11): 1693–1696. Bibcode:1993PhRvL..71.1693M. doi:10.1103/PhysRevLett.71.1693. PMID 10054474.
  72. ^ Wells, J.C.; Simbotin, I.; Gavrila, M. (1998). "Physical Reality of Light-Induced Atomic States". Physical Review Letters. 80 (16): 3479–3482. Bibcode:1998PhRvL..80.3479W. doi:10.1103/PhysRevLett.80.3479.
  73. ^ Ernst, E; van Duijn, M. Gavrila; Muller, H.G. (1996). "Multiply Charged Negative Ions of Hydrogen Induced by Superintense Laser Fields". Physical Review Letters. 77 (18): 3759–3762. Bibcode:1996PhRvL..77.3759V. doi:10.1103/PhysRevLett.77.3759. PMID 10062301.
  74. ^ Shertzer, J.; Chandler, A.; Gavrila, M. (1994). "H2+ in Superintense Laser Fields: Alignment and Spectral Restructuring". Physical Review Letters. 73 (15): 2039–2042. Bibcode:1994PhRvL..73.2039S. doi:10.1103/PhysRevLett.73.2039. PMID 10056956.
  75. ^ Richard R. Ernst (December 9, 1992). "Nuclear Magnetic Resonance Fourier Transform (2D-FT) Spectroscopy" (PDF). Nobel Lecture. Retrieved 25 April 2012.
  76. ^ Shor, P.W. (1994). "Algorithms for quantum computation: Discrete logarithms and factoring". Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc. Press. pp. 124–134. doi:10.1109/SFCS.1994.365700. ISBN 978-0-8186-6580-6.
  77. ^ Nielsen, Michael A.; Chuang, Isaac L. (2010-12-09). Quantum Computation and Quantum Information: 10th Anniversary Edition. doi:10.1017/CBO9780511976667. ISBN 978-1-107-00217-3. Retrieved 2024-04-20. ((cite book)): |website= ignored (help)
  78. ^ PPPL, Princeton, USA Archived 2011-06-07 at the Wayback Machine. Pppl.gov (1999-02-12). Retrieved on 2012-05-17.
  79. ^ Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. (December 2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–887. arXiv:quant-ph/0112176. Bibcode:2001Natur.414..883V. doi:10.1038/414883a. ISSN 1476-4687. PMID 11780055.
  80. ^ Vainerman, Leonid (2003). Locally Compact Quantum Groups and Groupoids: Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, February 21–23, 2002. Walter de Gruyter. pp. 247–. ISBN 978-3-11-020005-8. Retrieved 17 May 2012.
  81. ^ Aspect, A. (2007). "To be or not to be local". Nature. 446 (7138): 866–867. Bibcode:2007Natur.446..866A. doi:10.1038/446866a. PMID 17443174.
  82. ^ Cho, Adrian (2010-12-17). "Breakthrough of the Year: The First Quantum Machine". Science. 330 (6011): 1604. Bibcode:2010Sci...330.1604C. doi:10.1126/science.330.6011.1604. PMID 21163978.
  83. ^ "Coherent Population". Defense Procurement News. 2010-06-22. Retrieved 2013-01-30.
  84. ^ "The Higgs boson | CERN". home.cern. Retrieved 2020-08-26.
  85. ^ Markoff, John (29 May 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times. Retrieved 29 May 2014.
  86. ^ Pfaff, W.; et al. (29 May 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science. 345 (6196): 532–535. arXiv:1404.4369. Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID 25082696. S2CID 2190249.

Bibliography