In mathematics, particularly in functional analysis and convex analysis, the Ursescu theorem is a theorem that generalizes the closed graph theorem, the open mapping theorem, and the uniform boundedness principle.

Ursescu Theorem

The following notation and notions are used, where is a set-valued function and is a non-empty subset of a topological vector space :

Statement

Theorem[1] (Ursescu) — Let be a complete semi-metrizable locally convex topological vector space and be a closed convex multifunction with non-empty domain. Assume that is a barrelled space for some/every Assume that and let (so that ). Then for every neighborhood of in belongs to the relative interior of in (that is, ). In particular, if then

Corollaries

Closed graph theorem

Closed graph theorem — Let and be Fréchet spaces and be a linear map. Then is continuous if and only if the graph of is closed in

Proof

For the non-trivial direction, assume that the graph of is closed and let It is easy to see that is closed and convex and that its image is Given belongs to so that for every open neighborhood of in is a neighborhood of in Thus is continuous at Q.E.D.

Uniform boundedness principle

Uniform boundedness principle — Let and be Fréchet spaces and be a bijective linear map. Then is continuous if and only if is continuous. Furthermore, if is continuous then is an isomorphism of Fréchet spaces.

Proof

Apply the closed graph theorem to and Q.E.D.

Open mapping theorem

Open mapping theorem — Let and be Fréchet spaces and be a continuous surjective linear map. Then T is an open map.

Proof

Clearly, is a closed and convex relation whose image is Let be a non-empty open subset of let be in and let in be such that From the Ursescu theorem it follows that is a neighborhood of Q.E.D.

Additional corollaries

The following notation and notions are used for these corollaries, where is a set-valued function, is a non-empty subset of a topological vector space :

Corollary — Let be a barreled first countable space and let be a subset of Then:

  1. If is lower ideally convex then
  2. If is ideally convex then

Related theorems

Simons' theorem

Simons' theorem[2] — Let and be first countable with locally convex. Suppose that is a multimap with non-empty domain that satisfies condition (Hwx) or else assume that is a Fréchet space and that is lower ideally convex. Assume that is barreled for some/every Assume that and let Then for every neighborhood of in belongs to the relative interior of in (i.e. ). In particular, if then

Robinson–Ursescu theorem

The implication (1) (2) in the following theorem is known as the Robinson–Ursescu theorem.[3]

Robinson–Ursescu theorem[3] — Let and be normed spaces and be a multimap with non-empty domain. Suppose that is a barreled space, the graph of verifies condition condition (Hwx), and that Let (resp. ) denote the closed unit ball in (resp. ) (so ). Then the following are equivalent:

  1. belongs to the algebraic interior of
  2. There exists such that for all
  3. There exist and such that for all and all
  4. There exists such that for all and all

See also

Notes

  1. ^ Zălinescu 2002, p. 23.
  2. ^ Zălinescu 2002, p. 22-23.
  3. ^ a b Zălinescu 2002, p. 24.

References