Магнитная индукция
Размерность MT−2I−1
Единицы измерения
СИ Тл
СГС Гс
Примечания
Векторная величина
Классическая электродинамикаЭлектричество · Магнетизм .mw-parser-output .ts-Скрытый_блок{margin:0;overflow:hidden;border-collapse:collapse;box-sizing:border-box;font-size:95%}.mw-parser-output .ts-Скрытый_блок-title{text-align:center;font-weight:bold;line-height:1.6em;min-height:1.2em}.mw-parser-output .ts-Скрытый_блок .mw-collapsible-content{overflow-x:auto;overflow-y:hidden;clear:both}.mw-parser-output .ts-Скрытый_блок::before,.mw-parser-output .ts-Скрытый_блок .mw-collapsible-toggle{padding-top:.1em;width:6em;font-weight:normal;font-size:calc(90%/0.95)}.mw-parser-output .ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{float:right;text-align:right}.mw-parser-output .ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{float:left;text-align:left}.mw-parser-output .ts-Скрытый_блок-gray{padding:2px;border:1px solid #a2a9b1}.mw-parser-output .ts-Скрытый_блок-transparent{border:none}.mw-parser-output .ts-Скрытый_блок-gray .ts-Скрытый_блок-title{background:#eaecf0;padding:.1em 6em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-transparent .ts-Скрытый_блок-title{background:transparent;padding:.1em 5.5em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray .mw-collapsible-content{padding:.25em 1em}.mw-parser-output .ts-Скрытый_блок-transparent .mw-collapsible-content{padding:.25em 0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:6.5em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-right:0}.mw-parser-output .ts-Скрытый_блок+.ts-Скрытый_блок,.mw-parser-output .ts-Скрытый_блок+link+.ts-Скрытый_блок{border-top-style:hidden}Электростатика Закон Кулона Теорема Гаусса Электрический дипольный момент Электрический заряд Электрическая индукция Электрическое поле Электростатический потенциал Магнитостатика Закон Био — Савара — Лапласа Закон Ампера Магнитный момент Магнитное поле Магнитный поток Магнитная индукция Электродинамика Векторный потенциал Диполь Потенциалы Лиенара — Вихерта Сила Лоренца Ток смещения Униполярная индукция Уравнения Максвелла Электрический ток Электродвижущая сила Электромагнитная индукция Электромагнитное излучение Электромагнитное поле Электрическая цепь Закон Ома Законы Кирхгофа Индуктивность Радиоволновод Резонатор Электрическая ёмкость Электрическая проводимость Электрическое сопротивление Электрический импеданс Ковариантная формулировка Тензор электромагнитного поля Тензор энергии-импульса 4-потенциал 4-ток См. также: Портал:Физика

Магни́тная инду́кциявекторная физическая величина, являющаяся силовой характеристикой магнитного поля, а именно характеристикой его действия на движущиеся заряженные частицы и на обладающие магнитным моментом тела.

Стандартное обозначение: ; единица измерения в СИтесла (Тл), в СГСгаусс (Гс) (связь: 1 Тл = 104 Гс).

Величина магнитной индукции фигурирует в ряде важнейших формул электродинамики, включая уравнения Максвелла.

Для измерения магнитной индукции используются магнитометры-тесламетры. Также она может быть найдена расчётным путём — в статической ситуации для этого достаточно знать пространственное распределение токов.

Вектор в общем случае зависит от координат рассматриваемой точки и времени . Он не инвариантен относительно преобразований Лоренца и изменяется при смене системы отсчёта.

Физический смысл

Магнитная индукция — это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью , равна

(по величине ).

Косым крестом обозначено векторное произведение, α — угол между векторами скорости и магнитной индукции (вектор перпендикулярен им обоим и направлен по правилу левой руки).

Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещённую в предполагаемое однородным (на расстояниях порядка размера рамки) магнитное поле, к произведению силы тока в рамке на её площадь. Момент сил зависит от ориентации рамки и достигает максимального значения при каких-то определённых углах. Звёздочка у символа указывает на то, что заряд или ток являются «пробными», то есть используемыми именно для регистрации поля, в отличие от тех же величин без звёздочки.

Магнитная индукция выступает основной, фундаментальной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля .

Способы расчёта

Общий случай

В общем случае расчёт магнитной индукции проводится совместно с расчётом электрической составляющей электромагнитного поля посредством решения системы уравнений Максвелла:

,

где магнитная постоянная, магнитная проницаемость, диэлектрическая проницаемость, а скорость света в вакууме. Через обозначена плотность заряда (Кл/м3) и через плотность тока (А/м2).

Магнитостатика

В магнитостатическом пределе[3] расчёт магнитного поля может быть выполнен с использованием формулы Био—Савара—Лапласа. Вид этой формулы несколько различен для ситуаций, когда поле создаётся текущим по проводу током и когда оно создаётся объёмным распределением тока:

.

В магнитостатике эта формула играет ту же роль, что закон Кулона в электростатике. Формула позволяет вычислить магнитную индукцию в вакууме. Для случая магнитной среды необходимо использовать уравнения Максвелла (без слагаемых с производными по времени).

Если заранее очевидна геометрия поля, помогает теорема Ампера о циркуляции магнитного поля[4] (эта запись является интегральной формой уравнения Максвелла для в вакууме):

.

Здесь — произвольная поверхность, натянутая на выбранный замкнутый контур .

Простые примеры

Вектор магнитной индукции прямого провода с током на расстоянии от него составляет

,

где — единичный вектор вдоль окружности, по оси симметрии которой проложен провод. Предполагается, что среда однородна.

Вектор магнитной индукции прямого внутри соленоида с током и числом витков на единицу длины равен

,

где — единичный вектор вдоль оси соленоида. Здесь также предполагается однородность магнетика, которым заполнен соленоид.

Связь с напряжённостью

Магнитная индукция и напряжённость магнитного поля связаны через соотношение

,

где магнитная проницаемость среды (в общем случае это тензорная величина, но в большинстве реальных случаев её можно считать скаляром, то есть просто константой конкретного материала).

Основные уравнения

Поскольку вектор магнитной индукции является одной из основных фундаментальных физических величин в теории электромагнетизма, он входит в большое число уравнений, иногда непосредственно, иногда через связанную с ним напряжённость магнитного поля. По сути, единственная область в классической теории электромагнетизма, где он отсутствует, — это электростатика.

Некоторые из уравнений:

из которого следуют выражения для силы, действующей на магнитный диполь в неоднородном магнитном поле,
(это выражение, точно соответствующее обычному закону Кулона, широко используется для формальных вычислений, для которых ценна его простота, несмотря на то, что реальных магнитных зарядов в природе не обнаружено; также может прямо применяться к вычислению силы, действующей со стороны магнитного поля на полюс длинного тонкого магнита или соленоида).
Оно входит (вместе с энергией электрического поля) и в выражение для энергии электромагнитного поля, и в лагранжиан электромагнитного поля, и в его действие. Последнее же с современной точки зрения является фундаментальной основой электродинамики (как классической, так в принципе и квантовой).

Типичные значения

характерные значения магнитной индукции
объект , Тл объект , Тл
магнитоэкранируемая комната 10-14 солнечное пятно 0,15
межзвёздное пространство 10-10 небольшой магнит (Nd-Fe-B) 0,2
магнитное поле Земли 5*10-5 большой электромагнит 1,5
1 см от провода с током 100 А 2*10-3 сильный лабораторный магнит 10
небольшой магнит (феррит) 0,01 поверхность нейтронной звезды 108

Примечания

  1. Если учитывать и действие электрического поля , то формула (полной) силы Лоренца принимает вид:
    При отсутствии электрического поля (или если член, описывающий его действие, специально вычесть из полной силы) имеем формулу, приведённую в основном тексте.
  2. Это определение с современной точки зрения менее фундаментально, чем приведённое выше (и является просто его следствием), однако с точки зрения близости к одному из практических способов измерения магнитной индукции может быть полезным; также и с исторической точки зрения.
  3. То есть в частном случае постоянных токов и постоянных электрического и магнитного полей или — приближённо — если изменения настолько медленны, что ими можно пренебречь.
  4. Являющаяся частным магнитостатическим случаем закона Ампера — Максвелла.

См. также

Для улучшения этой статьи по физике желательно: Найти и оформить в виде сносок ссылки на независимые авторитетные источники, подтверждающие написанное.Добавить иллюстрации.После исправления проблемы исключите её из списка. Удалите шаблон, если устранены все недостатки.