MR-snimka ljudskog koljena

Magnetna rezonanca (MR/MRI) je naziv procedure u medicini, kojom se prikazuju slojevi ljudskog tijela.

Uvod

MR uređaji snimaju signale koji potiču iz jezgri vodika (protona) koje se nalaze u molekulama ljudskog tijela koje je postavljeno u snažno, homogeno magnetno polje. Magnetno polje se označava jedinicom tesla (T). Dobiveni signal se snima u matricu nazvanu k-prostor (eng. k-space), analizira računarom i preračunava u snimku koja odgovara malenom volumenu tkiva (engl. voxel).

Kako se prilikom snimanja koriste jako magnetno polje i radiotalasi, snimanje je neškodljivo za razliku od radioloških metoda pri čemu se koriste rentgenske zrake (rendgensko zračenje), jer kod MR ne dolazi do ionizacije tkiva. Ipak dio energije se prenese u tkivo što se naziva SAR (od engl. specific absorption rate) i obilježava energiju koja se preda kao u zagrijavanje tkiva. Jedinica je mW/kg.

Posebna briga je potrebna kod trudnica, jer, iako nije dokazano štetno djelovanje samog MR snimanja, kontrast koji sadrži metal gadolinij prolazi kroz placentu u plod i postoji sumnja da ga može oštetiti. Stoga žene kod kojih postoji mogućnost trudnoće trebaju to napomenuti prije snimanja.

Podjela uređaja

Prema jačini magnetskog polja uređaje za MR snimanje djele se na:

Za usporedbu, Zemljino magnetno polje je 50 μT (0.000 005 T).

Prema vrsti magneta uređaje dijelimo na:

Osnove

Precesija spina jezgre u magnetskom polju

Jačina signala koji se odašilje iz tkiva ovisi o nizu svojstava molekule koje sadrže hidrogen i okolnih molekula unutar tkiva. Jezgre atoma s neparnim brojem protona i/ili neutrona rotiraju oko svoje osi. Ukoliko se takve jezgre dovedu u jako homogeno magnetsko polje, te im se dovede energija na rezonatnoj frekvenciji, one će odaslati sličan, slabi signal. Signal se snima pomoću zavojnica i niza pojačala te se digitalizira i obrađuje računarom. Jakost signala opada obrnuto proporcionalno sa kvadratom udaljenosti i vrlo je slab. Iako većina uređaja danas koriste četverostruke zavojnice, uređaju često mogu koristiti i više zavojnica odjednom ili imati više samih zavojnica (32, 64, 128, 256, ...) postavljenih uz tkivo kako bi što više signala snimile i na taj način poboljšale odnos signala i šuma a time i kvalitetu snimka. Glavno magnetno polje određuje rezonantu frekveciju ali i visinu signala koji skoro linearno raste s porastom polja (u okviru vrijednosti koje se danas redovno koriste (0.2 do 3 T). Što je polje jače (3 T i više), također rastu i dielektrički efekti samog tkiva što otežava snimanje i uvodi nove artefakte. Ipak, povišena razina signala omogućava snimanje u većoj rezoluciji (više detalja) i tanjih slojeva.

Osnovni način je spin-echo (SE), gdje se uvođenjem gradijenta osnovnog magnetskog polja samo dio tkiva dovodi u rezonanciju sa uređajem, nakon čega se odašilje signal za pobudu na toj, karakterističnoj frekvenciji. Da bi sloj bio što bolje ocrtan, nužno je precizno i snažno postavljanje gradijenta magnetnog polja. Kako bi snimanje bilo što brže, potrebno je da je postupak postavljanja tih gradijenata što brži. Zbog toga je jedna od važnijih karakteristika MR uređaja osim same jačine osnovnog polja jakost (mT/m) i brzina (mT/m/ms) gradijenata. Vrlo bitno svojstvo uređaja je i homogenost polja, posebice kod MR spektroskopije, a koja se označava sa ppm, npr. 4 ppm. Homogenost polja može biti izražena u jednoj ravni, u više ravni i u cijelom polju.

Količina eletromagnetne energije primjenjena na početku snimanja sloja se obično izražava u stepenima (°), gdje 180° označava energiju potrebnu za prekretanje spina u smjer suprotan od onog kojeg daje magnetno polje uređaja. SE tehnike obično koriste tu energiju, ali dio tehnika koristi manje energije čime se smanjuje i vrijeme relaksacije - otpuštanja energije u obliku radiotalasa.

Načini snimanja

Za razliku od drugih radioloških metoda (RTG, CT, UZ) u MR postoji niz načina snimanja tkiva. Proizvođači često imaju svoje zaštićene nazive raznih tehnika iako vrlo često počivaju na istim ili vrlo sličnim principima.

Tehnike korištenjem samog spina

Tehnike nastale korištenjem gradijenata

Ostale, posebne tehnike

fMRI mozga

k-prostor (matrica)

1983 Ljunggren[1] i Tweig[2] neovisno jedan od drugoga predstavljaju takozvani k-prostor, tehniku kojom ujedinjuju tehnike prikaza MR. Pokazali su da demodulacijom MR signala kojeg stvaraju spinovi jezgara koji imaju slobodnu precesiju u linearnom magnetnom polju daju vrijednost Fourierove transformacije efektivne gustoće samog spina tj.

gdje:

Drugim riječima, kako vrijeme proalzi, signal ocrtava putanju u K-prostoru s vektorom brzine putanje koja je proprocionalna vektoru narinutog magnetnog gradijenta.

Efektivna gustoća spina predstavlja pravu gustoću spina uz ispravak učinaka pripreme, opadanja signala, gubitka homogenosti (faze) zbog nehomogenosti polja, protoka, difuzije i slično kao i ostalih učinaka na količinu transverzalne magnetizacije koja može inducirati signal u prijemniku VF signala.

Iz osnovne formule k-prostora slijedi kako sliku možemo rekonstruirati ako se na matricu primjeni inverzna Fourierova transformacija.

Koristeći prikaz pomoću k-prostora, složena ideja je jako pojednostavljena. Na primjer, učinak faznog kodiranja (spn-wrap tehnika) prostora postaje znatno jasniji. U standardnim SE ili GE tehnikama gdje je gradijent za očitavanja stalan (npr. ), pobuđivanjem prostora pomoću VF signala, samo jedna linija k-prostora se očitava (snima). Kada je gradijent faznog očitanja nula, linije se snimaju po osi. Ukoliko je fazni gradijent različit od nule, u vremenu između VF impulsa za pobudu i gradijenta za očitanje, linija koja se očitava biva pomaknuta gore ili dolje u K-prostoru; npr. snimamo liniju =konstanto.

k-prostor također olakšava usporedbu raznih tehnika snimanja. U EPI tehnici s jednim impulsom, sve linije k-prostora se očitavaju odjednom, nakon čega slijedi sinusna ili zupčasta putanja. Kako su naizmjenične linije k-prostora očitane u suprotnim smjerovima, to se mora uzeti u obzir kod rekonstrukcije slike. FES ili EPI tehnike s više impulsima snimaju samo dio k-prostora nakon svakog impulsa. Svaki impuls snima drugi dio prostora (red, liniju) i to se ponavlja dok se ne ispuni čitav K-prostor (matrica). Kako podaci u sredini matrice predstavljaju niže prostorne frekvencije od prostora na rubovima k-prostora, sve što je bliže centru matrice više utjeće na kontrast snimke.

Važnost središta k-prostora u vidu utjecaja na kontrast snimke dolazi do izražaja u ostalim, naprednijim tehnikama snimanja. Jedna od takvih je spiralno snimanje - magnetni gradijent koji se narine u ritorajućoj putanji daje spiralno očitanje k-prostora (punjenje matrice) od centra prema rubu. Kako je i opadanje (vrijeme) signala najjače pri početku snimanja, tako snimanje središnjeg dijela daje jači odnos signala i šuma (S/Š, SNR) u usporedbi s uobičajenim zupčastim-isprepletenim načinom prolaska kroz k-prostor, pogotovo ako je prisutno kretaje.

Kako su i konjugovane (imajući Fourierovu transformaciju u vidu) Nyquistov teorem, možemo pokazati kako korak u k-prostoru određuje veličinu snimanog prostora (najveći frekvenciju koja je pravilno snimljena) dok maksimalna vrijednost k uzorka oređuje rezoluciju.

(Ovo se primjenjuje na svaku osu [X, Y i Z] nezavisno jedna o drugoj).

Cijena uređaja i pregleda

Cijena uređaja jako ovisi o snazi polja ali i drugim mogućnostima. Današnji uređaji od 1.5T koštaju od 1.250.000 do 2.000.000 KM, dok permanentni, otvreni, snage polja od 0.2-0.3T koštaju otprilike upola manje. Jači magneti su u pravilu teži pa su troškovi postavljanja i do 30% cijene samog uređaja.

Rizici po bolesnike i pravila ponašanja pri snimanju

Za davanje kontrasta postoje kontraindikacije (trudnoća, hronična dijaliza, i td.) dok se sami pregled uglavnom izbjegava u trudnica u prvom tromjesečju (iako nema dokaza o nuspojavama). Također, osobe koje imaju probleme sa zatvorenim prostorima trebaju potražiti savjet ili uređaje koji su "otvorene" konstrukcije. Do sada je zabilježeno svega par ozbiljnih ozljeda pri samom početku korištenja MR-a i sve su bile vezane uz metalne (željezne) predmete koji su ozljedili bolesnike i osoblje (škare, boca za kisik, bolesnička kolica). Kako magnetsko polje jako privlači željezne predmete, na svakom uređaju stoje upozorenja. Tako bolesnici koji imaju u sebi legure željeza ili pacemaker trebaju svakako obavjestiti liječnika i osoblje prije ulaska u prostoriju s MR uređajem. Također razne tetovaže, naušnice, zubne proteze i slično mogu smetati snimanju ili izazvati neželjene učinke, pa čak i opekotine.

Hitnost pregleda

Iako MR pregledi imaju znatnu vrijednost, izuzetno je mali broj hitnih stanja (svega par) koja se snimaju MR uređajima. Razlozi su razni, počevši od dostupnosti drugih radioloških (UZ, CT, ...) i ostalih dijagnostičkih metoda do same činjenica da su MR uređaji bitno manje dostupni.

Također pogledajte

Reference

  1. ^ Ljunggren S. J Magn Reson 1983; 54:338.
  2. ^ Twieg D (1983). "The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods". Med Phys. 10 (5): 610–21. PMID 6646065.

Vanjski linkovi