Der Bezugswert ist in vielen Fachgebieten eine bestimmte physikalische Größe oder Zahl, der zu Vergleichen herangezogen wird.

Allgemeines

[Bearbeiten | Quelltext bearbeiten]

So basieren alle Angaben in Prozent auf einem Bezugswert.

.

Wird der Bezugswert nicht angegeben, kann es leicht zu Missverständnissen oder Widersprüchen kommen.

Beispiel 1: Die Mehrwertsteuer wird in Prozent vom Nettopreis erhoben. Ausgehend vom im Einzelhandel zu nennenden Endpreis (Bruttopreis) wäre der bezogene Anteil der Mehrwertsteuer niedriger.

Beispiel 2: Ändert ein Händler einen Preis, so wird üblicherweise als Bezugswert der aktuelle Preis herangezogen. Das bedeutet: Wird ein Preis von 100 € um 20 % vermindert auf 80 € und nach einigen Wochen wieder angehoben auf den alten Betrag, so ist damit eine Preiserhöhung um 25 % verbunden.

Verwendung in Physik und Technik

[Bearbeiten | Quelltext bearbeiten]

Im physikalisch-technischen Zusammenhang werden in der Fachliteratur folgende Verwendungen hervorgehoben:

Die zu vergleichende Größe wird zum Bezugswert häufig über eine Differenz in Beziehung gebracht (z. B. bei der Messabweichung), die Werte können aber auch über einen Quotienten verknüpft werden (z. B. beim Verhältnis), oder über einen Quotienten der Differenz zum Bezugswert (z. B. bei der relativen Fehlergrenze).

Weitere fachspezifische Verwendungen

[Bearbeiten | Quelltext bearbeiten]

In verschiedenen Fachgebieten ist der Begriff Bezugswert, eventuell auch Referenzwert genannt, auf spezielle Art definiert, oder er wird durch ein ganzes Bezugssystem vieler einzelner Bezugswerte ersetzt.

Solche Bezugswerte können sein:

Siehe auch

[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. IEC 60050, siehe DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE: Internationales Elektrotechnisches Wörterbuch IEV Eintrag 311-01-16.
  2. Martin Klein (Hrsg.): Einführung in die DIN-Normen. Springer Fachmedien, 12. Aufl., 1997, S. 788.
  3. DIN 55350-13, Begriffe der Qualitätssicherung und Statistik - Teil 13: Begriffe zur Genauigkeit von Ermittlungsverfahren und Ermittlungsergebnissen, 1987, Nr. 1.2.
  4. Sigmar German, Peter Drath: Handbuch SI-Einheiten: Definition, Realisierung, Bewahrung und Weitergabe der SI-Einheiten, Grundlagen der Präzisionsmeßtechnik, Vieweg, 1979, S. 257.
  5. Herbert Bernstein: NF- und HF-Messtechnik: Messen mit Oszilloskopen, Netzwerkanalysatoren und Spektrumanalysator. Springer Vieweg, 2015, S. 265
  6. Erwin Meyer, Dieter Guicking: Schwingungslehre. Vieweg. 1974, S. 19.
  7. Karl-Heinrich Grote, Jörg Feldhusen (Hrsg.): Dubbel: Taschenbuch für den Maschinenbau. Springer, 23. Aufl., 2011, S. 29.
  8. Horst Germer, Norbert Wefers: Meßelektronik: Band 1, Hüthig, 1985, S. 41.