Künstlerische Darstellung des Exoplaneten HD 209458b (Osiris) vor seinem Stern

Hot Jupiter (deutsch: Heißer Jupiter) bezeichnet eine Klasse von Exoplaneten, deren Masse etwa der des Jupiter (1,9 × 1027 kg) entspricht oder diese übersteigt und deren Oberflächentemperatur deutlich höher ist als die des Jupiter (165 K, d. h. −108 °C). Eine Mindesttemperatur für eine Einordnung in diese Planetenklasse ist nicht allgemein festgelegt; in der Sudarsky-Klassifikation wird der Begriff für Gasplaneten mit einer Gleichgewichtstemperatur ab 900 K (etwa 630 °C) verwendet.[1]

Die vergleichsweise hohe Oberflächentemperatur der Hot Jupiters ist dadurch bedingt, dass sie – im Unterschied zu den Verhältnissen in unserem Sonnensystem – ihr Zentralgestirn nicht in einer mittleren Entfernung von 5 Astronomischen Einheiten umkreisen, sondern typischerweise in nur etwa 0,05 AE (etwa 1/8 des Abstandes zwischen Merkur und der Sonne). Die Umlaufdauer der Hot Jupiters liegt zwischen einem und fünf Tagen, wobei ihre Masse selten zwei Jupitermassen übersteigt.

Beispiele sind 51 Pegasi b (Dimidium), HD 209458 b (Osiris) und die Exoplaneten in den Systemen HD 195019, HD 189733 und WASP-12b.

Berechnete Temperaturen von Exoplaneten mit Massen zwischen 0,1 und 10 Jupitermassen, für die solche Daten bis Ende Mai 2015 vorlagen[2]
Hot Jupiters (entlang des linken Randes), welche bis einschließlich 31. August 2004 entdeckt wurden. Rote Punkte: durch Transit entdeckt. Blaue Punkte: durch Messung der Radialgeschwindigkeit entdeckt. Linien zeigen Limits einzelner Entdeckungsmethoden auf: Transit, Dopplerverschiebung, Astrometrie und Microlensing. Courtesy NASA/JPL-Caltech.

Entdeckungsmöglichkeiten

Hot Jupiters sind jene Exoplaneten, die am leichtesten durch Messung der Radialgeschwindigkeit zu entdecken sind. Denn infolge ihrer engen Umkreisung und ihrer hohen Masse rufen sie im Vergleich zu anderen Planeten eine sehr schnelle und starke Oszillation des Zentralgestirns hervor.

Außerdem ist die Wahrscheinlichkeit, einen Durchgang von der Erde aus zu beobachten, um einiges höher als bei Planeten mit ausgedehnteren Umlaufbahnen, z. B. höher als bei Jupiter analogs.

Daher fällt der überwiegende Teil der Exoplaneten mit jupiterähnlicher Masse, die bis heute (Stand Mai 2015) entdeckt wurden und für die aus den Messdaten ein brauchbarer Temperaturwert hergeleitet werden kann, in die Klasse der Hot Jupiter.[2]

Eigenschaften

Heiße Jupiter weisen einige Gemeinsamkeiten auf:

Entwicklung

Theoretische Berechnungen legen nahe, dass alle Gasriesen, inklusive der Hot Jupiters, nahe der Eislinie entstehen, die bei den meisten Sternen im Abstand von einigen astronomischen Einheiten liegt. Man geht davon aus, dass die Hot Jupiters dann erst später in ihre derzeitige Umlaufbahn gelangten (Migration), da in einer so geringen Entfernung zum Zentralstern nicht genügend Material vorhanden sein konnte, um Planeten dieser Masse in situ zu bilden. Dies wird durch Beobachtungen unterstützt, wonach bei jungen Sternen kurz nach der Auflösung der protoplanetaren Scheibe keine Hot Jupiters gefunden werden (nicht genügend Zeit für die Migration).

Aufgrund der o. g. Bahnneigung geht man außerdem davon aus, dass die Hot Jupiters durch Interaktion mit der protoplanetaren Scheibe oder mit anderen Planeten aus ihrer ursprünglichen Bahn herausgestreut und so die Migration initiiert wurde. Die dabei entstehende stark elliptische Bahn wird anschließend durch Gezeitenkräfte zirkularisiert.

Alternative Ansätze gehen davon aus, dass die Gasplaneten aufgrund von Reibung in der protoplanetaren Scheibe orbitalen Drehimpuls verlieren und nach innen wandern. Diese Bewegung kommt in einer engen Bahn um den Zentralstern zum Erliegen, weil der innere Bereich der Scheibe bei jungen stellaren Objekten bereits von Material befreit ist oder weil Gezeitenwellen zwischen dem Stern und dem Planeten eine weitere Annäherung verhindern.[9]

Wahrscheinlich sind viele derzeitige Bahnen von heißen Jupitern nicht langfristig stabil. Aufgrund der Darwin-Instabilität oder des Kozai-Effekts könnten die Gasplaneten später mit dem Zentralstern verschmelzen,[10][11] was als eine Leuchtkräftige Rote Nova beobachtbar wäre. Die geschätzte Rate eines Mergerburst aus einem heißen Jupiter liegt bei einem Ereignis alle 10 Jahre in der Milchstraße.

Die physikalischen Eigenschaften der Hot Jupiter sind recht unterschiedlich. Insbesondere verfügen einige über große Radien und geringe mittlere Dichten, während andere über einen dichten Kern verfügen. Diese Vielfalt könnte das Ergebnis von Zusammenstößen des Gasplaneten mit erdähnlichen Gesteinsplaneten sein. Bei der Wanderung in seine enge Bahn könnten solche Planeten aufgesammelt werden, und die beim Zusammenstoß freiwerdende Energie würde zu einem starken Anwachsen des Radius des Gasplaneten führen. Sinken die Überreste des Gesteinsplaneten in den Kern des Gasplaneten, so führt die stärkere Gravitationskraft nach dem Abkühlen der Atmosphäre des Planeten zu einer Kontraktion.[12]

Siehe auch

Einzelnachweise

  1. Mathias Scholz: Planetologie extrasolarer Planeten. Berlin/Heidelberg 2014, ISBN 978-3-642-41748-1, S. 276/277
  2. a b Datenbank auf exoplanet.eu, abgerufen am 27. Mai 2015
  3. J. T. Wright et al.: THE FREQUENCY OF HOT JUPITERS ORBITING NEARBY SOLAR-TYPE STARS. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1205.2273v1.
  4. Kevin C. Schlaufman, Joshua N. Winn: EVIDENCE FOR THE TIDAL DESTRUCTION OF HOT JUPITERS BY SUBGIANT STARS. In: Astrophysics. Solar and Stellar Astrophysics. 2013, arxiv:1306.0567v1.
  5. R. Sanchis-Ojeda, J. N. Winn, D. C. Fabrycky: Starspots and spin-orbit alignment for Kepler cool host stars. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1211.2002v1.
  6. C. A. Haswell et al.: Near-UV Absorption, Chromospheric Activity, and Star-Planet Interactions in the WASP-12 system. In: Astrophysics. Solar and Stellar Astrophysics. 2013, arxiv:1301.1860.
  7. D. Buzasi: STELLAR MAGNETIC FIELDS AS A HEATING SOURCE FOR EXTRASOLAR GIANT PLANETS. In: Astrophysics. Solar and Stellar Astrophysics. 2013, arxiv:1302.1466v1.
  8. K. Poppenhaeger, S. J. Wolk: Planets spinning up their host stars: a twist on the age-activity relationship. In: Astrophysics. Solar and Stellar Astrophysics. 2013, arxiv:1309.6356v1.
  9. Jason H. Steffen et al.: Kepler constraints on planets near hot Jupiters. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1205.2309v1.
  10. B. D. Metzger, D. Giannios, D. S. Spiegel: Optical and X-ray Transients from Planet-Star Mergers. In: Astrophysics. Solar and Stellar Astrophysics. 2010, arxiv:1204.0796.
  11. Benjamin J. Shappee, Todd A. Thompson: THE MASS-LOSS INDUCED ECCENTRIC KOZAI MECHANISM: A NEW CHANNEL FOR THE PRODUCTION OF CLOSE COMPACT OBJECT-STELLAR BINARIES. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1204.1053v1.
  12. Kassandra R. Anderson, Fred C. Adams: Effects of Collisions with Rocky Planets on the Properties of Hot Jupiters. In: Astrophysics. Solar and Stellar Astrophysics. 2012, arxiv:1206.5857v1.