Der Begriff linearer Operator wurde in der Funktionalanalysis (einem Teilgebiet der Mathematik) eingeführt und ist synonym zum Begriff der linearen Abbildung. Eine lineare Abbildung ist eine strukturerhaltende Abbildung zwischen Vektorräumen über einem gemeinsamen Körper. Werden Vektorräume über dem Körper der reellen oder komplexen Zahlen betrachtet und sind diese mit einer Topologie versehen (lokalkonvexe Räume, normierte Räume, Banachräume), so spricht man vorzugsweise von linearen Operatoren.

Im Gegensatz zu endlichdimensionalen Räumen, wo lineare Operatoren stets beschränkt sind, tauchen bei unendlichdimensionalen Räumen auch unbeschränkte lineare Operatoren auf.

Definition

[Bearbeiten | Quelltext bearbeiten]

Linearer Operator

[Bearbeiten | Quelltext bearbeiten]

Es seien und reelle oder komplexe Vektorräume. Eine Abbildung von nach heißt linearer Operator, wenn für alle und (bzw. ) die folgenden Bedingungen gelten:

  1. ist homogen:
  2. ist additiv:

Antilinearer Operator

[Bearbeiten | Quelltext bearbeiten]

Seien und komplexe Vektorräume. Ein Operator von in heißt antilinearer Operator, wenn für alle und die folgenden Bedingungen gelten:

  1. ist antihomogen:
  2. ist additiv:

Beispiele

[Bearbeiten | Quelltext bearbeiten]

Lineare Operatoren

[Bearbeiten | Quelltext bearbeiten]

Antilinearer Operator

[Bearbeiten | Quelltext bearbeiten]

Bedeutung und Anwendungen

[Bearbeiten | Quelltext bearbeiten]

Die Bedeutung linearer Operatoren besteht darin, dass sie die lineare Struktur des unterliegenden Raumes respektieren, d. h., sie sind Homomorphismen zwischen Vektorräumen.

Anwendungen linearer Operatoren sind:

Beschränkte lineare Operatoren

[Bearbeiten | Quelltext bearbeiten]

Definitionen

[Bearbeiten | Quelltext bearbeiten]

Seien und zwei normierte Vektorräume und ein linearer Operator. Die Operatornorm von ist definiert durch

,

wobei für diese Konstante

gilt. Ist die Operatornorm endlich, so heißt der Operator beschränkt, andernfalls unbeschränkt.

Die Menge aller beschränkten linearen Operatoren vom normierten Raum in den normierten Raum nennt man . Mit der Operatornorm ist dieser selbst ein normierter Vektorraum. Falls vollständig ist, ist er sogar ein Banachraum.[1] Falls mit identisch ist, wird auch abkürzend geschrieben. Die beschränkten linearen Operatoren lassen sich wie folgt charakterisieren:

Ist ein linearer Operator von nach , dann sind die folgenden Aussagen äquivalent:

  1. ist beschränkt, d. h. in enthalten.
  2. ist gleichmäßig stetig auf .
  3. ist stetig in jedem Punkt von .
  4. ist stetig in einem Punkt von .
  5. ist stetig in .

Beispiele beschränkter linearer Operatoren

[Bearbeiten | Quelltext bearbeiten]

Anwendungen

[Bearbeiten | Quelltext bearbeiten]

Unbeschränkte lineare Operatoren

[Bearbeiten | Quelltext bearbeiten]

Bei der Betrachtung unbeschränkter linearer Operatoren lässt man oft auch Operatoren zu, deren Definitionsbereich (Domäne) lediglich ein Unterraum des betrachteten Raumes ist, spricht man etwa von unbeschränkten linearen Operatoren auf Hilberträumen, so lässt man als Definitionsbereich auch einen Prähilbertraum als Teilraum eines Hilbertraums zu, präziser spricht man dann von dicht definierten unbeschränkten linearen Operatoren (s. u.). Der Operator wird als partielle Abbildung aufgefasst.

Ein Operator heißt dicht definiert, wenn seine Domäne eine dichte Teilmenge des Ausgangsraumes ist. Das Interesse an unbeschränkten Operatoren ist durch die Untersuchung von Differentialoperatoren und deren Eigenwertspektrum und Observablenalgebren begründet.

Eine große Klasse unbeschränkter linearer Operatoren bilden die abgeschlossenen Operatoren. Das sind Operatoren , deren Graph in der Produkttopologie von abgeschlossen ist. Für abgeschlossene Operatoren kann z. B. das Spektrum definiert werden.

Die Theorie der unbeschränkten Operatoren wurde von John von Neumann 1929 begründet.[2][3] Im Jahr 1932[4] unabhängig von von Neumann entwickelte Marshall Harvey Stone die Theorie der unbeschränkten Operatoren.[5]

Beispiel

[Bearbeiten | Quelltext bearbeiten]

Betrachte den Differentialoperator auf dem Banachraum der stetigen Funktionen auf dem Intervall . Wählt man als Definitionsbereich die einmal stetig differenzierbaren Funktionen , dann ist ein abgeschlossener Operator, der nicht beschränkt ist.

Anwendungen

[Bearbeiten | Quelltext bearbeiten]

Konvergenzbegriffe/Topologien auf Operatorräumen

[Bearbeiten | Quelltext bearbeiten]

Ist der zugrundeliegende Vektorraum endlichdimensional mit Dimension , so ist ein Vektorraum der Dimension . In diesem Fall sind alle Normen äquivalent, das heißt, sie liefern den gleichen Konvergenzbegriff und die gleiche Topologie.

Im Unendlichdimensionalen gibt es dagegen verschiedene nicht-äquivalente Topologien. Seien nun und Banachräume und eine Folge (oder auch ein Netz) in .

Normtopologie

[Bearbeiten | Quelltext bearbeiten]

konvergiert in der Normtopologie gegen genau dann, wenn:

Die Normtopologie ist die Topologie, die durch die offenen Kugeln erzeugt wird.

Starke Operatortopologie

[Bearbeiten | Quelltext bearbeiten]

konvergiert in der starken Operatortopologie (kurz stop) gegen genau dann, wenn es punktweise konvergiert:

oder anders ausgedrückt:

Die zugehörige Topologie ist die Initialtopologie, die durch die Menge von linearen Abbildungen

erzeugt wird. Dies ist die kleinste Topologie, in der all diese Abbildungen stetig sind. mit der starken Operatortopologie ist also ein lokalkonvexer Raum.

Alternativ ausgedrückt: Die starke Operatortopologie ist die Produkttopologie aller Funktionen von nach , eingeschränkt auf die (evtl. beschränkten) linearen Operatoren.

Schwache Operatortopologie

[Bearbeiten | Quelltext bearbeiten]

konvergiert in der schwachen Operatortopologie gegen genau dann, wenn

oder anders ausgedrückt:

(Hierbei bezeichnet den stetigen Dualraum von F)

Die zugehörige Topologie ist die Initialtopologie, die durch die Menge von linearen Funktionalen

erzeugt wird. Dies ist die kleinste Topologie, in der all diese Funktionale stetig sind. mit der schwachen Operatortopologie ist also ebenfalls ein lokalkonvexer Raum.

Literatur

[Bearbeiten | Quelltext bearbeiten]

Lehrbücher

[Bearbeiten | Quelltext bearbeiten]

Monografien

[Bearbeiten | Quelltext bearbeiten]

Weitere Fachbücher zur Theorie der Operatoren siehe auch Graduate Texts in Mathematics.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Dirk Werner: Funktionalanalysis. 7., korrigierte und erweiterte Auflage. Springer, 2011. ISBN 978-3-642-21016-7. Satz II.1.4.
  2. J. v. Neumann: Über einen Satz von Herrn M. H. Stone. In: The Annals of Mathematics. Band 33, Nr. 3, Juli 1932, S. 567, doi:10.2307/1968535, JSTOR:1968535.
  3. J. v. Neumann: Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren. In: Mathematische Annalen. Band 102, Nr. 1, Dezember 1930, ISSN 0025-5831, S. 49–131, doi:10.1007/BF01782338 (springer.com [abgerufen am 10. November 2022]).
  4. M. H. Stone: Linear Transformations in Hilbert Space: III. Operational Methods and Group Theory. In: Proceedings of the National Academy of Sciences. Band 16, Nr. 2, Februar 1930, ISSN 0027-8424, S. 172–175, doi:10.1073/pnas.16.2.172 (pnas.org [abgerufen am 10. November 2022]).
  5. Dirk Werner: Funktionalanalysis (= Springer-Lehrbuch). Springer Berlin Heidelberg, Berlin, Heidelberg 2018, ISBN 978-3-662-55406-7, S. 413 ff., doi:10.1007/978-3-662-55407-4 (springer.com [abgerufen am 10. November 2022]).