Die Poisson-Klammer, benannt nach Siméon Denis Poisson, ist ein bilinearer Differentialoperator in der kanonischen (hamiltonschen) Mechanik. Sie ist ein Beispiel für eine Lie-Klammer, also für eine Multiplikation in einer Lie-Algebra.

Definition

[Bearbeiten | Quelltext bearbeiten]

Die Poisson-Klammer ist definiert als

mit

Allgemein kann die Poisson-Klammer auch für Funktionen und definiert werden, die nicht von generalisierten Koordinaten und kanonischen Impulsen abhängen. Zur Verdeutlichung, auf welche Variablen sich die Poisson-Klammer beziehen soll, werden diese als Indizes an die Klammer geschrieben:

.

Eigenschaften

[Bearbeiten | Quelltext bearbeiten]
, insbesondere
Physikalisch liegt es nahe, anzunehmen, dass die Zeitentwicklung einer Eigenschaft eines Systems nicht von den verwendeten Koordinaten abhängen sollte; damit sollten auch die Poisson-Klammern unabhängig von den verwendeten kanonischen Koordinaten sein. Seien und zwei verschiedene Sätze von Koordinaten, die durch kanonische Transformationen transformiert werden, so gilt:
.
Der Beweis ist länglich, sodass wir ihn hier auslassen.

Fundamentale Poisson-Klammern

[Bearbeiten | Quelltext bearbeiten]

Für die kanonische Mechanik wichtig sind die fundamentalen Poisson-Klammern

(Kronecker-Delta)

Sie folgen aus den trivialen Beziehungen

Anwendung

[Bearbeiten | Quelltext bearbeiten]
.
Außerdem werden Observablen durch Operatoren dargestellt. Die oben angeführte Gleichung der Zeitevolution einer Observablen führt so auf die Zeitevolution von Operatoren eines quantenmechanischen Systems mit Hamiltonoperator im Heisenberg-Bild. Diese Bewegungsgleichung heißt Heisenbergsche Bewegungsgleichung. Die Liouville-Gleichung findet ihre Entsprechung dabei in der Von-Neumann’schen Bewegungsgleichung.
[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Hong-Tao Zhang: A Simple Method of Calculating Commutators in Hamilton System with Mathematica Software, arxiv:quant-ph/0204081