Künstlerische Darstellung einer Supernova vom Typ Ia

Supernovae vom Typ Ia sind eine relativ homogene Gruppe von Supernovae. Beim explosiven Aufleuchten zeigen sie in ihren Spektren keine Anzeichen von Wasserstoff oder Helium. Ihr charakteristisches Merkmal sind starke Absorptionslinien des Siliziums in der Zeit nach dem Maximum. Typ-Ia-Supernovae werden auch nach ihrem vermuteten Explosionsmechanismus als thermonukleare Supernovae bezeichnet. Im Gegensatz zu allen anderen Supernovaarten befindet sich in ihren Supernovaüberresten kein überlebender Zentralstern. Supernovae vom Typ Ia galten lange als die am genauesten bekannten Standardkerzen zur Entfernungsbestimmung im Bereich kosmologischer Distanzen, neuste Erkenntnisse lassen daran aber Zweifel aufkommen.[1]

Beobachtung

Spektrum der Typ-Ia-Supernova SN1998aq einen Tag nach dem Maximum.[2]

Die Klassifizierung von Supernovae vom Typ Ia beruht primär auf spektroskopischen Kriterien mit der vollständigen Abwesenheit von Wasserstoff und Helium sowie dem Nachweis von starken Siliziumlinien im Spektrum während des Anstiegs und des Maximums. Die spektralen Eigenschaften, die absolute Helligkeit 15 Tage nach dem Maximum sowie die Form der Lichtkurve sind bei 70 Prozent der Supernovae vom Typ Ia, den normalen Typ-Ia-Supernovae, fast identisch. Die optischen Spektren enthalten zum Zeitpunkt der maximalen Helligkeit Silizium, Sauerstoff, Kalzium und Magnesium. Daraus wird geschlossen, dass die äußeren Schichten des bei der Supernovaexplosion ausgeworfenen Materials aus chemischen Elementen mittlerer Masse bestehen. Einfach ionisierte Linien des Eisens dominieren das Spektrum ungefähr zwei Wochen nach dem Maximum. Etwa einen Monat später, während der Nebelphase, beginnen verbotene Linien des einfach und zweifach ionisierten Eisens und Kobalts sowie Absorptionslinien des Kalziums aufzutreten. Die Stärke der Kobaltlinien nimmt im Laufe der Zeit ab, während die Stärke der Linien des Eisens zunimmt. Die Lichtkurve der Supernovae vom Typ Ia lässt sich modellieren nach dem radioaktiven Zerfall von 56Ni über 56Co und weiter zu 56Fe. Dies passt auch zu dem zeitlichen Verlauf der Stärke der Spektrallinien.

Die frühen Spektren entstehen durch die Streuung eines thermischen Kontinuums mit P-Cygni-Profilen, deren blaues Ende bis zu 25.000 km/s erreicht. Die maximale Expansionsgeschwindigkeit nimmt schnell im Laufe der Zeit ab. Dabei sind die beobachteten Geschwindigkeiten abhängig von den chemischen Elementen und lassen eine geschichtete Struktur der in der Explosion entstehenden Produkte vermuten.

Schematische Lichtkurve von Supernovae vom Typ Ia. Die Leuchtkraft um das Maximum wird überwiegend durch den radioaktiven Zerfall von Nickel bestimmt, im späteren langsameren Abfall von Kobalt.

Die Lichtkurven der normalen Ia-Supernovae erreichen ungefähr 19 Tage nach der Explosion eine maximale absolute Helligkeit im Blauen und Visuellen des Johnson-Systems von bis zu −19,3 mag. Innerhalb eines Monats fällt die Helligkeit um drei Magnituden ab und danach weiter exponentiell mit einer Magnitude pro Monat. Im Infraroten tritt einen Monat nach dem ersten Maximum ein zweites auf. Aus den Lichtkurven wird abgeschätzt, dass in den Supernovae-Explosionen zwischen 0,3 und 0,9 Sonnenmassen an 56Ni synthetisiert werden. Im Radiobereich können Typ-Ia-Supernovae im Gegensatz zu Kernkollapssupernovae nicht nachgewiesen werden. Radiostrahlung entsteht nur Jahrtausende später in den Supernovaüberresten durch Bremsstrahlung, wenn das ausgeworfene Material mit interstellarer Materie wechselwirkt.

Untergruppen

Neben den normalen Typ-Ia-Supernovae treten noch lichtschwächere und hellere Supernovae auf, die sich spektroskopisch nicht oder nur wenig von den normalen Ia-Supernovae unterscheiden:

Bedeutung

Normale Supernovae vom Typ Ia sind die Standardkerzen zur Entfernungsbestimmung über kosmologische Distanzen. Mittels der Phillips-Beziehung können die leicht unterschiedlichen Lichtkurven normiert werden und zeigen dann 15 Tage nach dem Maximum nur noch eine Streuung ihrer absoluten Helligkeiten von 0,1 mag. Durch die Anwendung der Phillips-Beziehung wurde die beschleunigte Expansion des Universums entdeckt, die derzeit mit der Dunklen Energie erklärt wird. Daneben führen die Supernovae der interstellaren Materie bis zu 0,7 Sonnenmassen an schweren Elemente zu, die zu Staub kondensieren. Darüber hinaus tragen sie erhebliche Mengen an kinetischer Energie in die interstellare Materie ein, wodurch weitere Sternentstehung angestoßen werden kann. Die Supernovaüberreste sind wahrscheinlich die Orte, an denen ein großer Teil der kosmischen Strahlung auf annähernd Lichtgeschwindigkeit beschleunigt wird.

Heimatgalaxien

SN 2011fe in M101

Die Häufigkeit für das Auftreten einer Supernova vom Typ Ia wird für die Milchstraße auf eine bis drei pro Hundert Jahre geschätzt. Da große Teile der Milchstraße wegen der Extinktion durch Staub der interstellaren Materie nicht beobachtet werden können, werden Supernovae durch systematische Durchmusterungen in nahen Galaxien gesucht. Typ-Ia-Supernovae treten in allen Arten von Galaxien auf, im Gegensatz zu Kernkollapssupernovae stehen sie daher nicht in einer Verbindung mit massereichen Sternen. Sie werden auch in allen Arten von stellaren Populationen beobachtet.

In frühen Galaxien (‚früh‘ in der Klassifizierung nach Hubble) sind ihre Expansionsgeschwindigkeiten systematisch geringer und die maximale Helligkeit um 0,25 mag niedriger als bei späten oder Starburstgalaxien. Auch Galaxien mit hohen Gesamtmassen zeigen im Durchschnitt eine geringere Expansionsgeschwindigkeit der Supernovae vom Typ Ia. Diese Beziehungen bleiben auch für hohe Rotverschiebungen gültig.

Die Supernovaerate pro Sonnenmasse ist für späte Galaxientypen um einen Faktor 20 höher als für frühe Galaxien und ist umgekehrt linear abhängig von der Galaxienmasse. Im Bulge von Galaxien scheint die Supernovaerate geringer als in den Spiralarmen zu sein. In den Halos sind die Supernovae lichtschwächer als in den Spiralarmen. Aufgrund dieser Beobachtungen wird vermutet, dass die Typ-Ia-Supernovae sich dort typischerweise aus unterschiedlichen Vorläufersystemen entwickeln.

Supernova Ia als explodierender Weißer Zwerg vom C-O-Typ

Bei nahen Supernovae wie SN 2011fe kann aus dem Zeitpunkt des Shock Breakouts auf den Radius des explodierenden Sterns geschlossen werden. Dieser wird auf weniger als 0,02 Sonnenradien eingegrenzt. Aus der Lichtkurve kann die synthetisierte Masse an 56Ni berechnet werden, die bei normalen Supernovae vom Typ Ia bei durchschnittlich 0,5 Sonnenmassen liegt. Dieser Wert ist identisch mit der Untergrenze der Masse des Vorläufersterns und diese Kombination tritt nur bei entarteten Sternen auf: Weißen Zwergen, Neutronensternen oder den hypothetischen Quarksternen. Es gibt keinen plausiblen Mechanismus, wie ein Neutronenstern explodieren könnte, weshalb es allgemeiner Konsens ist, dass die Vorläufersterne von Supernovae des Typs Ia Weiße Zwerge sind. Weiße Zwerge können überwiegend aus Magnesium und Neon bestehen oder aus einem Gemisch aus Kohlenstoff und Sauerstoff. Sehr frühe Spektren solcher Supernovae zeigen Anzeichen von Kohlenstoff und Sauerstoff. Es sind thermonukleare Reaktionen bekannt, um aus einem Kohlenstoff-Sauerstoff-Gemisch alle in den Spektren nachgewiesenen Elemente zu erzeugen, während dies nicht für Magnesium oder Neon gilt. Daher wird vermutet, dass die Vorläufersterne von Supernovae vom Typ Ia C-O-Weiße-Zwerge sind.

Ein Weißer Zwerg in einem Doppelsternsystem kann instabil werden, wenn er im Laufe der Zeit Gas aus der ausgedehnten Hülle seines Begleiters akkretiert, wobei es zu mehreren Nova-Ausbrüchen kommen kann. Bei diesen Ausbrüchen fusioniert der Wasserstoff des akkretierten Gases, die Fusionsprodukte bleiben zurück, bis der vor der Supernova stehende Weiße Zwerg in seinem Kern große Mengen mit Sauerstoff verunreinigten Kohlenstoffs, einem riesigen Diamanten vergleichbar, enthält. Die unter hohem Gravitationsdruck herrschende mittlere Dichte liegt dabei typischerweise bei rund 3 t pro cm³. Wenn sich der Kern durch weitere Akkretion und Verbrennungsvorgänge in den Schalen der Chandrahsekharmasse nähert, wird er zunehmend instabil. Je mehr Masse ihm zugeführt wird, umso kleiner wird sein Radius, die Dichte steigt auf über 1000 t pro cm³. Nach Pauldrach ist er in diesem Zustand mehr Grenzgänger als Stern, da er keinen spezifizierbaren Radius mehr besitzt. Bei Erreichen der Grenzmasse zündet der Kohlenstoff nicht über eine Erhöhung der Temperatur, sondern aufgrund der weiteren Dichtezunahme. Die dadurch einsetzende Temperaturerhöhung nimmt der entartete Stern erst wahr, wenn er bei rund 10 Mrd. K wieder einen normal-thermischen, nicht-entarteten Zustand erreicht. Dabei wird in Sekundenbruchteilen der komplette Kohlenstoffvorrat zu Eisen und Nickel verbrannt und der Stern kann wieder normal auf das Szenario reagieren, d. h. er explodiert in einer thermonuklearen Supernova vom Typ Ia.[3]

Die weitaus am häufigsten vorkommenden Isotope von Sauerstoff und Kohlenstoff haben genauso viele Protonen wie Neutronen im Atomkern. Bei einem Proton-Neutron-Verhältnis von 1 werden in der Supernova große Mengen radioaktiven Nickel-56 erzeugt, das die höchste Bindungsenergie (größter Massendefekt) unter allen Isotopen mit paritätischem Protonen-Neutronen-Verhältnis besitzt.[4] Nickel-56 wandelt sich durch Elektroneneinfang mit einer Halbwertszeit von 6,1 Tagen (entsprechend einer durchschnittlichen Lebensdauer von rund 9 Tagen) unter Abgabe eines Neutrinos und eines Photons zu ebenfalls radioaktivem Cobalt-56 um. Dieses zerfällt seinerseits im Anschluss mit einer Halbwertszeit von 77,2 Tagen (ø-Lebensdauer 111 Tage), wiederum unter Abgabe von Neutrinos und elektromagnetischer Strahlung, zu Eisen-56, einem stabilen Isotop (rund 81 % des Cobalt-56 zerfallen über Elektroneneinfang und die restlichen 19 % über Positronenemission). Es sind damit die im Zerfall von 56Ni über 56Co zu 56Fe gebildeten Gammaquanten, die für die charakteristische Helligkeitskurve einer Supernova vom Typ Ia ausschlaggebend sind. Diese Gammastrahlen können nicht sofort in den Weltraum entweichen. Sie werden im anfangs dicht gepackten Explosionsmaterial transformiert und können das Medium erst zeitverzögert verlassen. Im Bereich des sichtbaren Lichts prägen sie so der Helligkeitskurve der Supernova in den ersten rund 100 Tagen ihren charakteristischen Verlauf auf.[5] Die Lichtkurve beruht damit auf Fission, nicht auf Fusion. Die Masse des im Fusionsprozess gebildeten Nickels ist proportional zur freigesetzten Maximalenergie. Sie ist ebenso proportional zur insgesamt über mehrere Monate erzeugten radioaktiven Strahlung, die rund 10 % der im Kohlenstoffbrennen erzeugten Energie entspricht, vergleichbar etwa der Energieabstrahlung der Sonne über einen Zeitraum von 1 Mrd. Jahre. In den ersten zwölf Tagen der Supernovaexplosion wird etwa ein Drittel dieser Leistung abgestrahlt.[6]

Entsprechend der C-O-Weiße-Zwerge-Hypothese kann bei 20 Prozent der Supernovae vom Typ Ia eine Signatur des CII in frühen Spektren etwa fünf Tage vor dem Maximum nachgewiesen werden. Diese Beobachtungen können als unverbrannter Kohlenstoff aus den äußeren Schichten des Weißen Zwerges oder als Folge einer asymmetrischen Explosion interpretiert werden.

Potentielle Vorläufer

Bisher ist es nicht gelungen, ein Vorläufersystem einer Supernova vom Typ Ia im Optischen, im Infraroten, im UV oder im Röntgenbereich zweifelsfrei zu identifizieren.

Weitere Mechanismen

Es sind eine Reihe von hypothetischen Modellen entwickelt worden, die zu einer Zerstörung eines C-O-Weißen-Zwerges durch thermonukleare Reaktionen führen können:

Zeitverzögerung

Die Zeitverzögerung beschreibt in der Astrophysik den Abstand zwischen der Sternentstehung und der Explosion als Supernova. Aus der Verteilung der beobachteten Zeitverzögerungen kann auf die Population der Sterne bzw. Doppelsterne geschlossen werden, die in einer Typ-Ia-Supernova enden; sie dient damit zur Diskriminierung zwischen den im vorherigen Abschnitt aufgeführten Modellen. Dies gelingt besonders gut in Galaxien, die nur eine Sternengeneration hervorgebracht haben (z. B. einige Zwerggalaxien), oder bei ehemaligen Starburstgalaxien, bei denen die meisten Sterne in einem kurzen Zeitraum entstanden sind. Das Ergebnis dieser Untersuchungen deutet auf zwei Populationen von Vorläufersystemen hin:

Die beobachtete Verteilung der Zeitverzögerung kann nicht nur durch eins der oben beschriebenen Vorläufersysteme repräsentiert werden.

Simulation des Explosionsvorgangs

Im Gegensatz zu dem eher quasi-statischen Gleichgewicht in anderen Lebensphasen von Sternen ist eine Supernovaexplosion ein hochdynamischer Prozess. Deshalb kann der Einfluss z. B. der Turbulenz nicht mehr durch eine mittlere Mischungslängentheorie beschrieben werden, sondern die Turbulenz muss über alle Skalenlängen berechnet werden von der Mikro- bis zur Makroturbulenz. Dies ist mit der heute verfügbaren Rechenleistung nicht möglich, weswegen die physikalischen Modelle stark vereinfacht werden müssen. Es gelingt bisher nicht, die normalen Typ-Ia-Supernovaeexplosionen zufriedenstellend zu simulieren. Dies kann eine Folge zu starker Vereinfachungen in der Modellierung sein, oder weil noch nicht die korrekten Vorgängersysteme bzw. Explosionsmechanismen gefunden wurden.

Kritik am Standardmodell

Das Standardmodell für Supernovae vom Typ Ia ist intensiv ausgearbeitet worden. Aber auch 40 Jahre nach dem Vorschlag, diese Supernovae als das Ergebnis einer Zerstörung eines Weißen Zwerges zu begreifen, gibt es noch ungelöste Probleme:[8]

Literatur

Einzelnachweise

  1. Yijung Kang et al.: Early-type Host Galaxies of Type Ia Supernovae. II. Evidence for Luminosity Evolution in Supernova Cosmology. 18. Januar 2020, abgerufen am 24. Januar 2020 (englisch).
  2. Matheson, Thomas u. a.: Optical Spectroscopy of Type Ia Supernovae. In: Astronomical Journal. 135. Jahrgang, Nr. 4, 2008, S. 1598–1615, doi:10.1088/0004-6256/135/4/1598, arxiv:0803.1705, bibcode:2008AJ....135.1598M.
  3. Adalbert W. A. Pauldrach: Das Dunkle Universum. Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum zum Sterben geboren?, 2. Aufl., Springer 2017 (ISBN 978-3-662-52915-7), Seite 379ff.
  4. Friedrich Röpke und Ruperto Carola in scinexx vom 6. Mai 2016: Das Licht der Leuchttürme. Warum sind die Supernovae so hell?
  5. Max-Planck-Gesellschaft vom 27. August 2014: Blick ins Herz einer Sternexplosion. Max-Planck-Forscher beobachten Gammalinien einer Supernova vom Typ Ia.
  6. Adalbert W. A. Pauldrach: Das Dunkle Universum. Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum zum Sterben geboren?, 2. Aufl., Springer 2017 (ISBN 978-3-662-52915-7), Seite 395ff.
  7. Adalbert W. A. Pauldrach: Das Dunkle Universum. Der Wettstreit Dunkler Materie und Dunkler Energie: Ist das Universum zum Sterben geboren?, 2. Aufl., Springer 2017 (ISBN 978-3-662-52915-7), Seiten 426ff.
  8. L. Clavelli: Six indications of radical new physics in supernovae Ia. In: Astrophysics. Solar and Stellar Astrophysics. 2017, arxiv:1706.03393v1.