Bei einem Prozess ist die Verweilzeit (griechisches kleines Tau) die Zeit, in der z. B. ein definiertes Flüssigkeitsvolumen in einem Reaktor oder in der gesamten Anlage „verweilt“.

Bei kontinuierlichen Reaktoren beschreibt die Verweilzeit die Effizienz des Prozesses und wird dort auch als Raumzeit bezeichnet.
Streng genommen bezieht sich die mittlere Verweilzeit auf den austretenden Volumenstrom, während sich die Raumzeit auf den eintretenden Strom bezieht. Ändert sich die Dichte jedoch nicht (was bei den meisten Flüssigphasenreaktionen der Fall ist) und sind daher ein- und austretender Volumenstrom gleich, so sind auch Raumzeit und mittlere Verweilzeit identisch.

Die Verweilzeit eines chemischen Reaktors ist eine der wichtigsten reaktionstechnischen Kenngrößen. So ist das Produkt der Geschwindigkeitskonstante einer Reaktion erster Ordnung und der mittleren Verweilzeit die erste Damköhlerzahl , die wesentlich den Umsatz einer einfachen Reaktion in einem Reaktor bestimmt.

Bestimmung

In Versuchsapparaturen wird die Verweilzeit meist mit einer Markierungssubstanz (Tracer) bestimmt, welche in den Zulauf des Apparates injiziert wird. Der Tracer sollte sich quantitativ im Strom durch den Apparat bestimmen lassen.

Grundsätzlich werden unterschieden:

Wird nun die Tracerkonzentration am Ablauf des Apparates über die Zeit gemessen, so erhält man bei der Stoßmarkierung die Verweilzeitdichtefunktion E(t). Das Integral über diese Funktion ist per Definition gleich 1:

Um die Verweilzeitsummenfunktion F(t) zu erhalten, muss über die Verteilungsdichtefunktion integriert werden:

Sie stellt den Anteil derjenigen Volumenelemente dar, die den Reaktor zum Zeitpunkt t nach der Zugabe zum Zeitpunkt 0 wieder verlassen haben.

Verweilzeitverhalten verschiedener Reaktoren

Verweilzeitdichtefunktionen verschiedener idealer Reaktoren

Grundsätzlich werden folgende kontinuierliche Idealreaktoren unterschieden, welche sich auch in ihrem Verweilzeitverhalten unterscheiden:

mit der normierten Verweilzeit .

Literatur