Giant kelp
Giant kelp

Aquaculture of giant kelp, Macrocystis pyrifera, is the cultivation of kelp for uses such as food, dietary supplements or potash.[1][2] Giant kelp contains compounds such as iodine, potassium, other minerals vitamins and carbohydrates.[3][4]


At the beginning of the 20th century California kelp beds were harvested for their potash.[1][5][6] Commercial interest increased during the 1970s and the 1980s due to the production of alginates, and also for biomass production for animal feed due to the energy crisis.[5][6][7] However commercial production for M. pyrifera never developed. With the end of the energy crisis and the decline in alginate prices, research into farming Macrocystis declined.[2]

The supply of M. pyrifera for alginate production relied heavily on restoration and management of natural beds during the early 1990s.[2][8] Other functions such as substrate stabilization were explored in California, where the “Kelp bed project” transplanted 3-6m adult specimens to increase the stability of the harbor and promote diversity.[8][3][9]

Twenty-first century

Research is investigating its use as feed for other aquaculture species such as fish.[8][10]

China and Chile are the largest producers of aquatic plants, each producing over 300,000 tonnes in 2007. How much of this total can be attributed to M. pyrifera is unclear.[11] Both countries culture a variety of species; in Chile 50% of the production involves Phaeophytes and the other 50% is Rhodophytes.[12] China produces a larger variety of seaweeds including chlorophytes.[13] Experiments in Chile are exploring hybrids of M. pyrifera and M. integrifolia.[14]

Kelp farming development has been ongoing in Oregon and British Columbia.[15][16][17]

Kelp forest restoration in California

In the 2010s, Northern California lost 95% of its kelp ecosystems due to marine heatwaves.[18][19][20][21]

Kelp bed recovery efforts in California are primarily focusing on sea urchin removal,[22] both by scuba divers, and by sea otters, which are natural predators.[23][24][25][26][27]

A brown algae, Sargassum horneri, an invasive species first spotted in 2003, has also been a concern.[28][29]

Researchers at the Bodega Marine Laboratory of UC Davis are developing replanting strategies, and volunteers of the Orange County Coastkeeper group are replanting giant kelp.[30][31] Humboldt State University began cultivating bull kelp in its research farm in 2021.[32]

Research efforts at the state level to prevent kelp forest collapse in California were announced in July 2020.[33]

At the federal level, H.R. 4458, the Keeping Ecosystems Living and Productive (KELP) Act, introduced July 29, 2021, seeks to establish a new grant program within NOAA for kelp forest restoration.[34]


The most common method of cultivating M. pyrifera was developed in China in the 1950s. It is called the long line cultivation system, where the sporelings are produced in a cooled water greenhouse and then planted in the ocean attached to long lines.[35] The depth at which they are grown varies. This species alternates generations in its life cycle, cycling between a large sporophyte and a microscopic gametophyte. The sporophyte is harvested as seaweed. The mature sporophytes form the reproductive organs called sori. They are found on the underside of the leaves and produce the motile zoospores that germinate into the gametophyte.[36][37] To induce sporalation, plants are dried for up to twelve hours and placed in a seeding container filled with seawater of about 9-10 °C; salinity of 30% and a pH of 7.8-7.9.[12][35][38] Photoperiod is controlled during sporolation and growth phases. A synthetic twine of about 2 – 6mm in diameter is placed on the bottom of the same container after sporalation. The released zoospores attach to the twine and begin to germinate into male and female gametophytes.[12][35][38] Upon maturity these gametophytes release sperm and egg cells that fuse in the water column and attach themselves to the same substrate as the gametophytes (the twine).[12][35][38] These plants are reared into young sporophytes for up to 60 days.[35][38]

These strings are either wrapped around or are cut up into small pieces and attached to a larger diameter cultivation rope. The cultivation ropes vary, but extend approximately 60m with floating buoys attached.[12] The depths vary. In China, M. pyrifera is cultivated on the surface with floating buoys attached every 2-3m and the ends of the rope attached to a wooden peg anchored to the substrate. Individual ropes are usually hung at 50 cm intervals.[35] In Chile M. pyrifera is grown at a depth of 2m using buoys to keep the plants at a constant depth.[38] These are then let alone to grow until harvest.

Problems that afflict this method include management of the transition from spore to gametophyte and embryonic sporophyte which are done on a terrestrial facility with careful control of water flow, temperature, nutrients and light.[35] The Japanese use a forced cultivation method where 2 years of growth is achieved within a single growing season by controlling inputs.[35]

In China a project for offshore/deep water cultivation used various farm structures to facilitate growth, including pumping nutrients from deep water into the beds. The greatest benefit for this approach was that the algae were released from size constraints of shallow waters. Issues with operational and farm designs plagued deep water cultivation and ended further exploration.[35]


The duration of cultivation varies by region and farming intensity. This species is usually harvested after two growth seasons (2 years).[12][35] M. pyrifera that is artificially cultivated on ropes is harvested by a pulley system that is attached to boats that pull the individual lines on the vessels for cleaning.[12][35] Other countries such as the US rely primarily on naturally grown M. pyrifera, use boats to harvest the surface canopy several times per year. This is possible due to fast growth while the vegetative and reproductive parts are left undamaged.[3][39]


In the UK, legislation defines giant kelp as a nuisance. Invasive specimens are mechanically removed.[40]

The demand for M. pyrifera centers on fertilizers, bioremediation and feed for abalone and sea urchins.[2][8]

Carbon sequestration

Offsetting current carbon emissions would require some 50 trillion trees. An alternative offset would be to cultivate kelp forests. Kelp can grow at 2 feet per day, 30 times faster than terrestrial plants. Planting kelp across 10% of the oceans (4.5 x the area of Australia) could provide the same offset. Additionally, the kelp would support a fish harvest of 2 megatons per year and reduce ocean acidification. Large scale open ocean forestry would require engineered substrate and added nutrients.[41][42]

A Maine startup, Running Tide Technologies, seeks to grow large quantities of kelp which would sequester carbon in the ocean floor.[43][44][45][46]


A kelp nursery and planting program is under development near Catalina Island. Cultivation techniques using a "kelp elevator" have shown promise for biofuel production using thermochemical liquefaction.[47][48] This research effort is supported by ARPA-E.[49][50]


Small-scale cultivation uses kelp as a replacement for kale.[47] Organizations such as Connecticut-based GreenWave connect ocean farmers with kelp buyers in an effort to support the ocean greens market.

See also


  1. ^ a b Abbott 1996.
  2. ^ a b c d Gutierrez et al. 2006.
  3. ^ a b c Bushing 2000.
  4. ^ Connor 1989, p. 58.
  5. ^ a b Neushul 1987.
  6. ^ a b Druehl et al. 1988.
  7. ^ Gerard 1987.
  8. ^ a b c d Buschmann et al. 2008.
  9. ^ Simenstad, Estes & Kenyon 1978.
  10. ^ Cruz-Suárez et al. 2009.
  11. ^ Fish and Agriculture Organization 2007.
  12. ^ a b c d e f g Buschmann et al. 2005.
  13. ^ Wu & Lin 1987.
  14. ^ Westermeier et al. 2006.
  15. ^ "Kelp - Saving the Ocean's Forests". Oregon Kelp Alliance. Retrieved 2021-08-11.
  16. ^ Godin, Melissa (2020-09-04). "The Ocean Farmers Trying to Save the World With Seaweed". Time. Retrieved 2021-08-11.
  17. ^ Badelt, Brad (2017-07-20). "B.C. kelp farming is untapped resource". BCBusiness. Retrieved 2021-08-11.
  18. ^ "Hitting Rock Bottom: The Disappearance of California's Underwater Forests". The Bill Lane Center for the American West, Stanford University. 2021-03-18. Retrieved 2021-08-11.
  19. ^ Kerlin, Kat (2019-10-21). "California's Crashing Kelp Forest". Science and Climate. Retrieved 2021-08-11.
  20. ^ University of California Santa Cruz (2021-03-05). "The collapse of Northern California kelp forests will be hard to reverse". Retrieved 2021-08-11.
  21. ^ "5 Reasons to Protect Kelp, the West Coast's Powerhouse Marine Algae". Pew Research Center. 2020-05-27. Retrieved 2021-08-11.
  22. ^ Foster, Michael S (2013). "Kelp Forests in California" (PDF). Smithsonian Contributions to the Marine Sciences.
  23. ^ "New Findings on Kelp Forest Restoration". USC Sea Grant - USC Dana and David Dornsife College of Letters, Arts and Sciences. Retrieved 2021-08-11.
  24. ^ "Saving California's kelp forests". CNN. Retrieved 2021-08-11.
  25. ^ "New Study Finds Hope for Restoration of Kelp Beds and Commercial Fisheries". PolyCentric. 2021-06-21. Retrieved 2021-08-11.
  26. ^ "Project: Palos Verdes". SeaTrees, by Sustainable Surf. 2021. Retrieved 2021-08-11.
  27. ^ Hohman, R (2019). "Sonoma-Mendocino Bull Kelp Recovery Plan, for Greater Farallones National Marine Sanctuary and California Department of Fish & Wildlife" (PDF). Greater Farallones Association. Retrieved 2021-08-11.
  28. ^ "Marine Invasive Species - Channel Islands National Park". U.S. National Park Service. 2017-04-17. Retrieved 2021-08-11.
  29. ^ Ritchie, Erika I (2020-09-08). "An Orange County marine biologist wants to weed the ocean to help kelp grow". Orange County Register. Retrieved 2021-08-11.
  30. ^ "Kelp: California's Coastal Forests". Coastal and Marine Sciences Institute, UC Davis. 2021-01-12. Retrieved 2021-08-11.
  31. ^ "Kelp Reforestation Program". Orange County Coastkeeper. Retrieved 2021-08-11.
  32. ^ "Kelp is on the Way". Humboldt State Now. 2021-07-12. Retrieved 2021-08-11.
  33. ^ Leitzell, Katherine (2020-07-06). "New research to address kelp forest crisis in California". California Sea Grant. Retrieved 2021-08-11.
  34. ^ Bittenbender, Steve (2021-08-10). "Huffman-sponsored bill seeks grant funding to restore kelp forests". SeafoodSource. Retrieved 2021-08-11.
  35. ^ a b c d e f g h i j k Mariculture of Seaweeds
  36. ^ Mondragón & Mondragón 2003.
  37. ^ Prescott 1968, pp. 226–227.
  38. ^ a b c d e Westermeier, Patiño & Müller 2006.
  39. ^ Hoek et al. 1995, p. 170.
  40. ^ Schedule 9 Wildlife and Countryside Act 1981
  41. ^ Wang, Brian (2019-02-18). "The Oceans and Kelp are Critical to Solving Climate Change". Retrieved 2019-02-20.
  42. ^ Jones, Nicola (2016-07-12). "How Growing Sea Plants Can Help Slow Ocean Acidification". Yale E360. Retrieved 2021-08-11.
  43. ^ Benveniste, Alexis (2021-05-03). "This startup grows kelp then sinks it to pull carbon from the air". CNN. Retrieved 2021-08-11.
  44. ^ "Running Tide, Fighting Climate Change with Kelp". Maine Technology Institute. 2021. Retrieved 2021-08-11.
  45. ^ Bever, Fred (2021-03-01). "'Run The Oil Industry In Reverse': Fighting Climate Change By Farming Kelp". Retrieved 2021-08-11.
  46. ^ Smith, Heather (2021-06-03). "Can Farming Seaweed Put the Brakes on Climate Change?". Sierra Club. Retrieved 2021-08-11.
  47. ^ a b Monika Evstatieva; Ari Shapiro (22 Aug 2017). "Scientists Hope To Farm The Biofuel Of The Future In The Pacific Ocean".
  48. ^ "Crops". Catalina Sea Ranch. Retrieved 2021-08-11.
  49. ^ "USC scientists may have unlocked kelp's potential as major biofuel source". USC News. 2021-03-02. Retrieved 2021-08-11.
  50. ^ "University of California, Irvine (UC Irvine) - MacroAlgae Cultivation Modeling System". ARPA_E. 2017-09-19. Retrieved 2021-08-11.