This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's factual accuracy is disputed. Relevant discussion may be found on the talk page. Please help to ensure that disputed statements are reliably sourced. (November 2021) (Learn how and when to remove this template message) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (November 2021) (Learn how and when to remove this template message) (Learn how and when to remove this template message)

CI chondrite
— Group —
Carbonaceous chondrites.jpg
Three non-CI carbonaceous chondrite samples- Allende (CV), Tagish Lake (C-ungr), Murchison (CM)
TypeChondrite
Structural classification?
ClassCarbonaceous chondrite
Subgroups
  • None?
Parent bodyUnknown
Composition?
Total known specimensDebated: 5–10+
TKW17 kilograms (37 lb)
Alternative namesCI chondrites, C1 chondrites, CI chondrite meteorites, C1 chondrite meteorites

CI chondrites, sometimes C1 chondrites, are a group of rare stony meteorites belonging to the carbonaceous chondrites. Samples have been discovered in France, Canada, India, and Tanzania. Compared to all the meteorites found so far, their overall chemical composition most closely resembles the elemental distribution in the sun's photosphere. Currently, borderline CI specimens found in Antarctica may or may not receive their own group, CY chondrites.

CI chondrites are rich in volatiles- water, organics, and other light elements/compounds. They have more water than comet 67P/Churyumov–Gerasimenko.[1][2]

Designation

The abbreviation CI is derived from the C for carbonaceous and in the name scheme of Wasson,[3] the I from Ivuna, the type locality in Tanzania. The 1 in C1 stands for the type 1 meteorites in the older classification scheme of Van Schmus-Wood,[4] still used for petrography. Petrographic type-1 meteorites, by definition, have no fully-visible chondrules.

Collection history

There are very few finds of CI chondrites, five or so altogether (see Antarctic section). The oldest find dates back to the year 1806: a meteorite was seen near Alès (or Alais) in France. Consequently, pieces weighing 6 kilograms were discovered at Saint-Étienne-de-l'Olm and Castelnau-Valence, small villages southeast of Alès. In 1864 another fall happened in France at Orgueil near Montauban. The meteorite had disintegrated into 20 pieces weighing a total of 10 kilograms. In 1911 a meteorite was seen near Tonk (Rajasthan) in India. Only a few fragments were recovered that weighed a mere 7.7 grams (0.27 oz).[5] The meteorite of the type locality Ivuna in Tanzania fell in 1938 splitting into three pieces of altogether 705 grams (24.9 oz). This was followed in 1965 by a very bright fall in Revelstoke, British Columbia, but only two tiny fragments of 1 gram (0.035 oz) were found. All in all roughly 17 kilograms of CI-chondrites exist so far.

CI Chondrites
Name Fall date Country TKW Ref.
Alais 1806 France 6 kg [6]
Orgueil 1864 France 14 kg [7]
Tonk 1911 India 7.7g [8]
Ivuna 1938 Tanzania 705g [9]
Revelstoke 1965 Canada 1.6g [10]

The meteorites, in particular Orgueil, have been distributed among collections around the world. Revelstoke, and to a lesser extent Tonk, are small and difficult to study, let alone disperse.[11]

Classification

CI chondrites are very fragile and porous rocks, which easily disintegrate on their descent through the atmosphere; this explains why mainly small fragments have been discovered so far. A good example is the very bright Revelstoke fall. Despite a bolide which "gave promise of being big", it yielded only two tiny fragments weighing below one gram- "the dubious distinction of being the smallest recovered meteorite" [at the time].[12] CI chondrites are characterized by a black fusion crust which sometimes is difficult to distinguish from the very similar matrix. The opaque matrix is rich in carbonaceous material and contains black minerals like magnetite and pyrrhotite. At some places white, water-bearing carbonates and sulfates are incorporated.

Chemistry- Solar (System) Reference Standard

Main article: Abundance of the chemical elements

The defining feature of CI meteorites is their chemical composition, rich in volatile elements- richer than any other meteorites. The element assay of CI meteorite is used as a geochemical standard, as it has "a remarkably close relationship"[13] to the makeup of the Sun and greater Solar System.[14][15] This abundance standard is the measure by which other meteorites,[16][17][18] comets,[19][20][21][22] and in some cases the planets themselves[23][24][25][20] (since revised[26][27]) are assayed.

Goldschmidt noted the primitive (pre-differentiated) compositions of some meteorites, calling it the "cosmic" abundance- he assumed meteorites had arrived from free space, not our Solar System.[28][29] In turn, the study of such abundances stimulated- then validated- work in nucleosynthesis and stellar physics.[30][17] In a sense, Goldschmidt's choice of terms may have been borne out: both Solar and CI compositions appear similar to nearby stars as well,[31][32] and presolar grains exist (though too small to be relevant here).

The CI abundance is more properly linked to the abundances in the solar photosphere. Small differences exist between the solar interior, photosphere, and corona/solar wind. Heavy elements may settle to the interiors of stars (for our Sun, this effect appears low[32]); the corona and thus the solar wind are affected by plasma physics and high-energy mechanisms and are imperfect samples of the Sun.[19][20] Other issues include the lack of spectral features- and thus, straightforward photospheric observation- of noble gases.[30] Since the CI values are measured directly (first by assay, now by mass spectrometry, and when necessary, neutron activation analysis), they are more precise than solar values, which are subject to (besides the above field effects) spectrophotometric assumptions, including elements with conflicting spectral lines. In particular, when the iron abundances of CIs and the Sun did not match,[33][34] it was the solar value that was questioned and corrected, not the meteorite number.[31][35] Solar and CI abundances, for better and for worse, differ in that e. g., chondrites condensed ~4.5 billion years ago and represent some initial planetary states (i. e., the proto-solar abundance),[36][37] while the Sun continues burning lithium[38] and possibly other elements[30][32][17] and continually creating helium from e. g., deuterium.

Issues with CI abundances include heterogeneity (local variation),[39][40] and bromine and other halogens, which are water-soluble and thus labile.[38][19][41][27] Volatiles, such as noble gases (though see below) and the atmophile elements carbon, nitrogen, oxygen, etc. are lost from minerals and not assumed to hold the Solar correspondence. However, in the modern era the Solar carbon and oxygen measurements have come down significantly.[30][42][43] As these are the two most abundant elements after hydrogen and helium, the Sun's metallicity is affected significantly.[43][44] It is possible that CI chondrites may hold too many volatiles, and the matrix of CM chondrites (excluding chondrules, calcium–aluminium-rich inclusions, etc.), or bulk Tagish Lake, may be a better proxy for the Solar abundance.[38][45][46]

See also: Advanced Composition Explorer

See also: Genesis_(spacecraft)

Oxygen

Oxygen is the chief element in CI- and many other- meteorites. Despite the Solar agreement, the common elements carbon and nitrogen rarely condense into minerals for inclusion and recovery as meteorites. Instead, they tend to form various gases. They were depleted in the early eras of the Solar System, while oxygen forms numerous oxides.

Oxygen isotope studies had been performed before the modern era, both on Earth rocks and meteorites.[47][48] However, isotope differences in individual samples (excepting radiosotopes) had once been widely held to be local effects, caused by separation processes (plus spallation, captures, etc.)- the materials had nevertheless all formed from a common pool, with a single oxygen mixture. The fall and analysis of the Allende meteorite, with large amounts of material available for study, demonstrated clearly that the Solar System contained different oxygen reservoirs, with different isotope ratios.[49][50]

The three stable O-isotopes are 16O, 17O, and 18O. A "three-isotope plot" (17O/16O axis versus 18O/16O axis) shows different Solar System materials- and thus, their oxygen reservoirs and likely, different formation regions- in different fields. The CI chondrites are clearly distinguished isotopically from their petrological kin, the CM chondrites, by their field: CIs are enriched in 18O, and to a lesser extent 17O, compared to CMs, with no overlap between them. The Antarctic (CI, CI-like, and/or CY) meteorites are even more enriched in 18O. These are the macroscopic samples with the heaviest oxygen in the Solar System. Oxygen isotope studies and classification have gone on to other meteorite groups, classes, and more astromaterials.[51][52][53][54][50]

Iron

Iron is present with 25 weight %, but mainly compounded in phyllosilicates and oxides (magnetite)- see below. This is a marginally higher level than CM chondrites, as iron is somewhat cooler-forming than magnesium. The siderophiles nickel and cobalt follow iron as well.[55]

The majority of the iron is in the form of cations in the phyllosilicates and iron bound as magnetite. Some appears as ferrihydrite,[56] but not in Ivuna.[57]

Carbon

CIs average ~3.8% carbon, with excursions from 2-5%. This is the highest of the carbonaceous chondrites, but not of all meteorites- some ureilites may contain more.

The carbon is partly in the form of native carbon (graphite, nanodiamonds, etc.), and carbonates,[58][59] but the bulk is dispersed as globules of organics.

Organic Compounds

Organics in CIs include a lesser amount of soluble fractions, and a majority of macromolecular (insoluble) organics such as PAHs.[60][61][62]

Nitrogen appears, both as nitriles/amines,[63] as well as dissolved ammonium.[64]

Gas

Main article: Gas-rich meteorites

All carbonaceous meteorites are, to some extent, gas-rich.[65][66] Orgueil,[67][43] Alais, Ivuna[68] and Tonk all assay to higher gas levels than typical meteorites-[69] Revelstoke is too small for traditional measurements.[70][18]

Most gases store mostly in carbon. Carbon's numerous allotropes form numerous network solids (particularly when heteroatoms are present), able to store atoms in their lattices and surfaces. Gases are often found in "dark" CM-like deposits,[66] "an extraordinary absorber", and in magnetite.[71][72]

Petrology

The main petrologic characteristic of Type 1 chondrites, such as CIs, is the lack of recognizable chondrules, thus excepting the sample from Tagish Lake. Yet small chondrule fragments and calcium-aluminium-rich inclusions (CAI's) do occur, but are quite rare.[73]

Type 1 2 3 4 5 6 7
Texture no chondrules very clearly defined chondrules well defined chondrules chondrules can be recognized poorly recog- nizable chondrules relict chondrules
Matrix fine grained opaque chiefly fine, opaque clastic and minor opaque coarse grained transparent, recrystallized, coarsening from type 4 to 7
Homogeneity of ol + px (Fe, Mg content) >5% mean deviation of Fe 0-5% homogeneous
Low-Ca pyroxene polymorph mainly cpx, monoclinic cpx abundant, monoclinic >20% cpx abundant, monoclinic <20% orthorombic
Feldspar primary only; minor and calcic crystalline, secondary feldspar absent Secondary feldsp. very fine grained <2 um fine grained, small secondary grains <50 um grains cleaarly visible, coars-ening from type 5 to 7, > grains 50 um
Glass in chondrules clear and isotropic turbid, devitrified Absent
Metal, maximum Ni content taenite minor or absent, <20 wt% Ni kamacite and taenite (>20% wt% Ni) in exsolution
Sulfides, mean Ni content >0.5% wt% <0.5% wt%
H2O content (wt%) 18-20 2-16 0.3-3 <2
Carbon content (wt%) 3-5 1.5–2.8 0.1–1.1 <0.2

Source: Lodders, K. Fegley, B. Jr. The Planetary Scientist's Companion, 1998, itself from prior refs.

Phyllosilicates and Aqueous Alteration

Main article: Silicate_mineral § Phyllosilicates

Though CM chondrites also have large amounts of phyllosilicates,[74][75] CI chondrites are distinguished petrologically by a near-absence of anything but phyllosilicate matrix, per their Type 1 designation.[76][77] CMs are predominantly tochilinite-cronstedtite intergrowths ("TCI"), while CIs hold serpentinite-smectite (often saponite) layers.[78][56][57][79] In both cases, the two minerals form sheets alternating at the molecular level; the phyllosilicate then holds hydroxide ions (OH) or true water (H2O) bound between layers (possibly both, in the case of multilayers).[80] Serpentinite and saponite were identified by their characteristic 7-Angstrom and ~12-Angstrom sheet spacings, respectively.[81][57][82]

These phyllosilicates are the products of aqueous alteration. The original protosolar condensates olivine and pyroxene, with ionic bonds between their components, are susceptible to water, especially with heating.[83][84][85] The debate is whether this alteration, in general, happened at free-floating particles (the nebular hypothesis)[86] or within the meteorites (or their parent small bodies)- the parent body hypothesis.[87] On CI chondrites, the existence of veins, and multiple morphologies of magnetite, suggest possibly both, in multiple episodes.[88][56][57][54][89]

It is peculiar that extensively-altered material should yet have the most primitive element abundances.[90] Whatever aqueous processes shaped CI chondrites either did not drive minerals farther than mm- to cm-scale, or the parent body was so thoroughly fluidized that all volumes which became the CI chondrites were homogenized-[91][82][27][92] in either case, a closed system.[93][50]

Aqueous alteration has proceeded toward the point of no free (metallic) metal. All or essentially all metal grains are now bound as oxides, sulfides, etc.[94]

In the case of Antarctic finds (the putative CY chondrites), this process has partially reversed. Phyllosilicates have, to some extents, dehydrated and reverted to silicates[95][81][91][96] suggesting a different parent body for those meteorites.[97]

This water can be extracted artificially by thermogravimetric analysis: using heat to drive off volatiles from their storage. Temperatures vary with the form and host. In the case of hydroxide, two such ions hydroxylate each other, to give water molecules and half as many oxygen molecules:[98][99][100]

2 OH →  H2O + 1/2 O2

Water

CI chondrites contain between 17 and 22 weight % water- more water than comet 67P/Churyumov–Gerasimenko.[101][102][103] Their high porosity (of up to 30%) seems to be correlated to those facts. The water is mostly tied up in water-bearing silicates. Strong aqueous alteration at rather low temperatures (at 50 to 150 °C)[104] – a hallmark of CI chondrites – is indicated by the occurrence of minerals like epsomite, but also by carbonates and sulfates. Liquid water must have penetrated the parent body through cracks and fissures and then deposited the water-bearing phases.

Fluid inclusions- crystal voids intact enough to enclose liquids- have been identified in other meteorites,[105][106] and the CI chondrites Ivuna, and likely Orgueil.[107][108] Such brine samples are the only direct surviving fluids that can be studied from the early Solar System.

Magnetite

Free (metallic) iron is essentially absent, converted to e. g., magnetite. Though found in many meteorites, magnetite is common and characteristic of the carbonaceous chondrites, and especially of CIs.[109] Magnetite abundance is ~4%, second after phyllosilicates;[110] it takes many sizes and morphologies.[111][112][113]

These morphologies include conventional crystals, spheres and spheroids. Sphere(oids) are multiple sizes[109][88] unlike CM.[72] "Framboids" (fr. raspberry-like) are round clusters of smaller, round spheroids.[111][88][89] "Plaquettes" resemble stacks of dishes, threads, or beehives.[111][113][89] They are characteristic of CIs, and not found in CMs.[77][89]

Magnetite originated from continuing oxidation of sulfides: nominally troilite (stoichiometric FeS) but de facto pyrrhotite (Fe(1-x)S) with pentlandite, pyrite, and their nickel substitutions, etc. Nickel, chromium, and other alloying elements are then shed as tiny grains.[114][115][116] This oxidation appears to have occurred in multiple generations.[116][117]

Magnetite has clearly lighter oxygen isotopes.[118] It acts as a carrier phase for xenon.[119][72]

Sulfur Compounds

Iron sulfides like pyrrhotite, pentlandite, troilite and cubanite do occur, but[120] The Mg/Si ratio of 1.07 is rather high.[121] Only CV chondrites are more strongly enriched in magnesium. The Ca/Si ratio of 0.057 is the lowest of all carbonaceous chondrites.[122] As regards the oxygen isotopes, CI chondrites have the highest values in δ17O and δ18O among the carbonaceous chondrites, though see Antarctic specimens, below. The ratio 17/18 compares with terrestrial values (on the "TFL," the terrestrial fractionation line).

Other components

The phyllosilicate matrix is hosting intact mineral grains such as olivine/pyroxene, carbonates, sulfates, sulfides, and magnetite. CI-chondrites contain the following minerals:

All these ferromagnesian silicates are tiny, equidimensional, idiomorphic grains crystallized at high temperatures.

Water-bearing, clay-rich phyllosilicates like montmorillonite and serpentine-like minerals. Main constituents. As aqueous alteration minerals occur:

Carbonaceous minerals include:

The ferromagnesian minerals are isolated and show no signs of alteration.[123]

Physical parameters

Because of their high porosity, CI chondrites have only a density of 2.2 g/cm3.

Natural history

Formation

CI chondrites and the closely related CM chondrites are very rich in volatile substances, especially in water. It is assumed that they originally formed in the outer asteroid belt, at a distance surpassing 4 AU – the reason for this being the so-called snow line situated at this distance and representing a temperature of 160 K. At these conditions any water present condensed to ice and was therefore preserved. This is supported by the similarity of CI chondrites with the icy moons of the outer Solar System. Furthermore, there seems to exist a connection to comets: like the comets, CI chondrites accreted silicates, ice and other volatiles, as well as organic compounds (example: Comet Halley).

Occurrence

The CI meteorites are rare, but CI material is widespread.[124] Complicating the question is that carbon and mixed organics tend to be opaque, and dominant in a material's spectrum. Yet they have flat, featureless spectra in the bands accessible to common telescopes on Earth, rendering them difficult to identify.[125][126]

Micrometeorites/Dust

The amount of material reaching the Earth as micrometeorites/interplanetary dust is over an order of magnitude-nearly two- greater than as macroscopic objects.[117] As frontal area falls with the square of size but volume falls with the cube of size, two objects of the same material (and thus, density) will see the larger heated and stressed on atmospheric entry much more than the much smaller one. Dust particles and to an extent micrometeorites overcome the fragility filter preventing more CI chondrite recoveries. Particles of a certain size also benefit from the Poynting-Robertson effect, causing them to encounter Earth at slower relative speeds.[127]

Micrometeorites/dust particles are diverse. They are typically CM-like, but also include CR-[124][128] and CI-like.[79] A dust particle, surviving for the age of the Solar System, would have quasi-CI abundances. Hydrous dust particles of this class resemble CI material.[127] Some, with no processing of a parent body, would have abundances even closer to protosolar.[129] This includes yet higher volatiles, such as in the UCAMMs (ultracarbonaceous Antarctic micrometeorites).

In Clasts

Main article: Clastic_rock

As with micrometeorites/dust, most examples are CM-like. However,[77]

Ceres

Ceres has been hypothesized to be a CI parent body.[130][131]

Comets?

Lines of evidence claim that comets are not CI chondrite parent bodies.[132][133] However, this evidence is variously philosophic and circumstantial. Space probes have upended our conception of comets; in particular, Stardust has returned material from Wild 2 that appears more asteroidal than cometary. (This, too, involves questions on the capture method and its selection/alteration effects.)[134]

The possibility that CI chondrites are comet samples is still being postulated.[135][136][137] Gounelle computes the prior orbit of Orgueil to be that of a short-period comet.[138][117]

This debate assumes the distinction between the two small bodies is valid and rigid, which is currently in discussion.[139][140][117] The issue includes mixing between (nominally) comets and asteroids in space.[141][142][2]

Antarctic CI chondrites (?)

Antarctica has been a fertile source of meteorites. Greater yields from the continent's ice fields have resulted in arguably CI or CI-like specimens, starting with Yamato 82042 and 82162 (Y 82042, Y82162). In 1992, Ikeda proposed that these meteorites, differing somewhat from non-Antarctic examples, should receive their own grouplet-[143] at the time, there were, three, short of the five (unpaired) meteorites needed for a full group.[144][145][146] These meteorites have measurably higher sulfide content, and an 18O level even higher than the prior CI specimens, making them the heaviest in oxygen of all meteorites found.

By 2015, the specimen list had grown: arguably Y 86029, 86720, 86789, 980115, Belgica 7904 and a desert chondrite, Dhofar 1988. King et al. renewed the call for a separate group, the "CY" chondrites.[147][148]

Most Antarctic specimens differ in that phyllosilicates have begun reverting (as described above), and in their sulfide content. Sulfides exceed magnetite.

Misclassification

Due to their rarity, and importance as geochemical references, many are eager to claim specimens as CI.

Bench Crater Sample

Main article: Bench Crater meteorite

During the Apollo 12 mission a meteorite was found 1969 on the moon, which was first thought to be a CI chondrite, but later turned out to be a closely related CM chondrite.

Kaidun

Main article: Kaidun meteorite

In 1983, Kallemeyn and Kerridge claimed that the Kaidun meteorite was a potential CI.[149] As the CR chondrite group was still under debate by the meteoritical community, CI appeared more appropriate at the time. Kaidun is officially a CR2.

Tagish Lake Meteorite

Main article: Tagish_Lake_(meteorite)

In 2000 a fall occurred at Tagish Lake in the Yukon Territory. This meteorite is not included within the CI chondrites, as it contains chondrules. It is designated C2-ungrouped (ung).

The meteorite is "no doubt" a type 2, petrographically.[150][151] Chemical abundances are "very similar" to CM, "distinctly higher than the CI chondrite" levels.[152] Although the carbon and nitrogen isotopes are closer to CI,[153] the oxygen isotopes, which predominate, are not CI-like. Tagish Lake is enriched in 17O, but deficient in 18O, placing it closer to the CM meteorites and on the CCAM (carbonaceous chondrite anhydrous mineral mixing) line with the CM-CO clan.[154][155][156]

Friedrich et al. conclude "[as to] Tagish Lake being a CI chondrite: it is not."[157]

NWA 5958

In 2011, another research group claimed the Northwest Africa 5958 meteorite (NWA 5958) was a CI.[158]

A later team reported that it is not.[159] NWA 5958 is a C2-ung.

Importance

Compared to all the meteorites found to date, CI chondrites possess the strongest similarity to the elemental distribution within the original solar nebula. For this reason they are also called primitive meteorites. Except for the volatile elements carbon, hydrogen, oxygen and nitrogen, as well as the noble gases, which are deficient in the CI chondrites, the elemental ratios are nearly identical. Lithium is another exception, it is enriched in the meteorites (lithium in the Sun is involved during nucleosynthesis and therefore diminished).

Because of this strong similarity, it has become customary in petrology to normalize rock samples versus CI chondrites for a specific element, i. e. the ratio rock/chondrite is used to compare a sample with the original solar matter. Ratios > 1 indicate an enrichment, ratios < 1 a depletion of the sample. The normalization process is used mainly in spider diagrams for the rare-earth elements.

CI chondrites also have a high carbon content. Besides inorganic carbon compounds like graphite, diamond and carbonates, organic carbon compounds are represented. For instance, amino acids have been detected. This is a very important fact in the ongoing search for the origin of life.

See also

References

  1. ^ Rickman, H. (2017). Origin and Evolution of Comets: Ten Years after the Nice Model and One Year after Rosetta. World Scientific. ISBN 978-981-3222-57-1.
  2. ^ a b Bouquet, A.; Miller K. E. Glein C. R. Mousis O. (2021). "Limits on the contribution of early endogenous radiolysis to oxidation in carbonaceous chondrites' parent bodies". Astron. Astrophys. 653: A59. Bibcode:2021A&A...653A..59B. doi:10.1051/0004-6361/202140798. S2CID 237913967.
  3. ^ Wasson, J. T. (1974). Meteorites-classification and properties. Berlin: Springer. ISBN 978-3-642-65865-5.
  4. ^ Van Schmus, W. R.; Wood, J.A. (1967). "A chemical-petrologic classification for the chondritic meteorites". Geochim. Cosmochim. Acta. 31 (5): 74765. Bibcode:1967GeCoA..31..747V. doi:10.1016/S0016-7037(67)80030-9.
  5. ^ Christie, W. A. K. (1914). "The composition of the Tonk Meteorite". The Journal of the Astronomical Society of India. 4 (2): 71–72.
  6. ^ Thenard, L. J. (1806). "Analyse d'un aerolithe tombe dans l'arrondisement d'Alais". Ann. Chim. Phys. 59: 103.
  7. ^ Pisani, F. (1864). "Étude chimique et analyse d'aérolithe d'Orgueil". Comptes Rendus de l'Académie des Sciences de Paris. 59: 132–35.
  8. ^ Christie, W. A. K. (1914). "A Carbonaceous Aerolite from Rajputana". Rec. Geol. Surv. India. 44: 41–51.
  9. ^ McSween, H. Y.; Richardson, S. M. (1977). "The composition of carbonaceous chondrite matrix". Geochim. Cosmochim. Acta. 41 (8): 1145–61. Bibcode:1977GeCoA..41.1145M. doi:10.1016/0016-7037(77)90110-7.
  10. ^ Folinsbee, R. E.; Douglas, J. A. V. (1967). "Revelstoke, a new Type I carbonaceous chondrite". Geochim. Cosmochim. Acta. 31 (10): 1625–35. Bibcode:1967GeCoA..31.1625F. doi:10.1016/0016-7037(67)90111-1.
  11. ^ Grady, M. M. (2000). Catalogue of Meteorites (5th ed.). Cambridge: Cambridge University Press. ISBN 0-521-66303-2.
  12. ^ Folinsbee, R. E.; Douglas, J. A. V.; Maxwell, J. A. (1967). "Revelstoke, a new Type I carbonaceous chondrite". Geochimica et Cosmochimica Acta. 31 (10): 1625−35. Bibcode:1967GeCoA..31.1625F. doi:10.1016/0016-7037(67)90111-1.
  13. ^ Holweger, H. (1977). "The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites". Earth and Planetary Science Letters. 34 (1): 152−54. Bibcode:1977E&PSL..34..152H. doi:10.1016/0012-821X(77)90116-9.
  14. ^ Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The chemical composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922.
  15. ^ Palme, H.; Lodders, K.; Jones A. (2014). "Solar system abundances of the elements". In Davis, A. M. (ed.). Treatise on Geochemistry. Elsevier. pp. 15−36.
  16. ^ Arndt, P.; Bohsung, J.; Maetz, M.; Jessberger, E. K. (1996). "The elemental abundances in interplanetary dust particles". Meteoritics & Planetary Science. 31 (6): 817−33. Bibcode:1996M&PS...31..817A. doi:10.1111/j.1945-5100.1996.tb02116.x.
  17. ^ a b c Lodders, K.; Fegley, B. Jr. (2011). Chemistry of the Solar System. Cambridge: RSC Publishing. ISBN 978-0-85404-128-2.
  18. ^ a b Russell, S. S.; Suttle, M. D.; King, A. J. (2021). "Abundance and importance of petrological type 1 chondritic material". Meteorit Planet Sci. 57 (2): 277–301. doi:10.1111/maps.13753. S2CID 243853829.
  19. ^ a b c Anders, E.; Grevesse, N. (1989). "Abundances of the elements: Meteoritic and solar". Geochim. Cosmochim. Acta. 53 (1): 197–214. Bibcode:1989GeCoA..53..197A. doi:10.1016/0016-7037(89)90286-X.
  20. ^ a b c Lodders, K.; Fegley, B. Jr. (1998). The Planetary Scientist's Companion. New York: Oxford University Press. ISBN 9780195116946.
  21. ^ Lewis, J. S. (2000). Comet and Asteroid Impact Hazards on a Populated Earth. San Diego: Academic Press. p. 50. ISBN 0-12-446760-1.
  22. ^ Paquette, J. A.; Engrand, C.; Stenzel, O.; Hilchenbach, M.; Kissel, J.; et al. (2016). "Searching for calcium-aluminum-rich inclusions in cometary particles with Rosetta/COSIMA". Meteorit Planet Sci. 51 (7): 1340−52. Bibcode:2016M&PS...51.1340P. doi:10.1111/maps.12669.
  23. ^ Harkins, W. D. (1917). "The Evolution of the Elements and the Stability of Complex atoms. I. A new periodic system which shows a relation between the abundance of the elements and the structure of the nuclei of atoms". J. Am. Chem. Soc. 39 (5): 856. doi:10.1021/ja02250a002.
  24. ^ Morgan, J. W.; Anders, E. (1979). "Chemical composition of Mars". Geochim. Cosmochim. Acta. 43 (10): 1601−10. Bibcode:1979GeCoA..43.1601M. doi:10.1016/0016-7037(79)90180-7.
  25. ^ Dreibus, G.; Wanke, H. (1985). "Mars, a volatile-rich planet". Meteoritics. 20 (2): 367−81. Bibcode:1985Metic..20..367D.
  26. ^ Warren, P. H. (2011). "Stable-isotope anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for cabonaceous chondrites". Earth Planet. Sci. Lett. 311 (1): 93−100. Bibcode:2011E&PSL.311...93W. doi:10.1016/j.epsl.2011.08.047.
  27. ^ a b c Palme, H.; Zipfel, J. (2021). "The composition of CI chondrites and their contents of chlorine and bromine: Results from instrumental neutron activation analysis". Meteorit. Planet. Sci. 57 (2): 317–333. doi:10.1111/maps.13720. S2CID 238805417.
  28. ^ Goldschmidt, V. M. (1938). Skrifter Norske Videnskaps: Geochemische Verteilungsgesetze der Elemente. Oslo: Dybwad.
  29. ^ Goldschmidt, V. M. (1954). Geochemistry. Oxford: Clarendon Press.
  30. ^ a b c d Grevesse, N.; Sauval, J. (1998). "Standard Solar Composition". Space Science Reviews. 85: 161−74. Bibcode:1998SSRv...85..161G. doi:10.1023/A:1005161325181. S2CID 117750710.
  31. ^ a b Anders, E. (1971). "How well do we know "Cosmic" abundances?". Geochim. Cosmochim. Acta. 35 (5): 516. Bibcode:1971GeCoA..35..516A. doi:10.1016/0016-7037(71)90048-2.
  32. ^ a b c Asplund, M.; Grevesse, N.; Sauval, A. J.; Scott, P. (2009). "The Chemical Composition of the Sun". Annual Review of Astronomy and Astrophysics. 47 (1): 481−522. arXiv:0909.0948. Bibcode:2009ARA&A..47..481A. doi:10.1146/annurev.astro.46.060407.145222. S2CID 17921922.
  33. ^ Warner, B. (1968). "The Abundance of Elements in the Solar Photosphere−IV The Iron Group". Mon. Not. R. Ast.Soc. 138: 229−43. doi:10.1093/mnras/138.2.229.
  34. ^ Kostik, R. I.; Shchukina, N. G.; Rutten, R. J. (1996). "The solar iron abundance: not the last word". Astron. Astrophys. 305: 325−42. Bibcode:1996A&A...305..325K.
  35. ^ Grevesse, N.; Sauval, A. J. (1999). "The solar abundance of iron and the photospheric model". Astron. Astrophys. 347: 348–54. Bibcode:1999A&A...347..348G.
  36. ^ Wieler, R.; Kehm, K.; Meshik, A. P.; Hohenberg, C. M. (1996). "Secular changes in the xenon and krypton abundances in the solar wind recorded in single lunar grains". Nature. 384 (6604): 46−49. Bibcode:1996Natur.384...46W. doi:10.1038/384046a0. S2CID 4247877.
  37. ^ Burnett, D. S.; Jurewicz, A. J. G.; Woolum, D. S. (2019). "The future of Genesis science". Meteorit. Planet. Sci. 54 (5): 1094−114. Bibcode:2019M&PS...54.1092B. doi:10.1111/maps.13266. PMC 6519397. PMID 31130804.
  38. ^ a b c Anders, E.; Ebihara, M. (1982). "Solar-system abundances of the elements". Geochim. Cosmochim. Acta. 46 (11): 2363−80. Bibcode:1982GeCoA..46.2363A. doi:10.1016/0016-7037(82)90208-3.
  39. ^ Ebihara, M.; Wolf, R.; Anders, E. (1982). "Are C1 chondrites chemically fractionated? A trace element study". Geochim. Cosmochim. Acta. 46 (10): 1849−62. Bibcode:1982GeCoA..46.1849E. doi:10.1016/0016-7037(82)90123-5.
  40. ^ Barrat, J. A.; Zanda, B.; Moynier, F.; Bollinger, C.; Liorzou, C.; Bayon, G. (2012). "Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes" (PDF). Geochim. Cosmochim. Acta. 83: 79−92. Bibcode:2012GeCoA..83...79B. doi:10.1016/j.gca.2011.12.011.
  41. ^ Burnett, D. S.; Woolum, D. S.; Benjamin, T. M.; Rogers, P. S. Z.; Duffy, C. J.; Maggiore, C. (1989). "A Test of the Smoothness of the Elemental Abundances of Carbonaceous Chondrites". Geochim. Cosmochim. Acta. 53 (2): 471. Bibcode:1989GeCoA..53..471B. doi:10.1016/0016-7037(89)90398-0.
  42. ^ Allende Prieto, C.; Lambert, D. L.; Asplund, M. (2001). "The Forbidden Abundance of Oxygen In The Sun". Astrophys. J. 556 (1): L63−66. arXiv:astro-ph/0106360. Bibcode:2001ApJ...556L..63A. doi:10.1086/322874. S2CID 15194372.
  43. ^ a b c Lodders, K. (2003). "Solar system abundances and condensation temperatures of the elements". Astrophys. J. 591 (2): 1220−47. Bibcode:2003ApJ...591.1220L. doi:10.1086/375492.
  44. ^ Allende Prieto, C. (2008). "The Abundances of Oxygen and Carbon in the Solar Photosphere". In van Belle, G. (ed.). 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun. Astronomical Society of the Pacific. ISBN 978-1-58381-331-7.
  45. ^ Buseck, P. Hua X. (1993). "Matrices Of Carbonaceous Chondrite Meteorites". Annual Review of Earth and Planetary Sciences. 21: 255–305. Bibcode:1993AREPS..21..255B. doi:10.1146/annurev.ea.21.050193.001351.
  46. ^ Asplund, M.; Amarsi, A. M.; Grevesse, N. (2021). "The chemical make-up of the Sun: A 2020 vision". Astron. Astrophys. 653: A141. arXiv:2105.01661. Bibcode:2021A&A...653A.141A. doi:10.1051/0004-6361/202140445. S2CID 233739900.
  47. ^ Vinogradov, A. P.; Dontsova, E. I.; Chupakhin, M. S. (1960). "Isotope ratios of oxygen in meteorites and igneous rocks". Geochim. Cosmochim. Acta. 18 (3): 278. Bibcode:1960GeCoA..18..278V. doi:10.1016/0016-7037(60)90093-4.
  48. ^ Taylor, H. P. jr.; Duke, M. B.; Silver, L.T.; Epstein, S. (1965). "Oxygen isotope studies of minerals in stony meteorites". Geochim. Cosmochim. Acta. 29 (5): 489−512. Bibcode:1965GeCoA..29..489T. doi:10.1016/0016-7037(65)90043-8.
  49. ^ Clayton, R. N.; Grossman, L.; Mayeda, T. K. (2 November 1973). "A Component of Primitive Nuclear Composition in. Carbonaceous Meteorites". Science. 182 (4111): 485–488. Bibcode:1973Sci...182..485C. doi:10.1126/science.182.4111.485. PMID 17832468. S2CID 22386977.
  50. ^ a b c Piralla, M.; Marrocchi, Y.; Verdier-Paoletti M. J.; Vacher L.; Villeneuve J.; Piani L.; Bekaert D. V.; Gounelle M. "Primitive water and dust of the Solar System: Insights from in situ oxygen measurements of CI chondrites". Geochim. Cosmochim. Acta. 269: 451−64. doi:10.1016/j.gca.2019.10.041. S2CID 209722141.
  51. ^ Clayton, R. N.; Onuma, N.; Mayeda, T. K. (1976). "A classification of meteorites based on oxygen isotopes". Earth Planet. Sci. Lett. 30 (1): 10−18. Bibcode:1976E&PSL..30...10C. doi:10.1016/0012-821X(76)90003-0.
  52. ^ Clayton, R. N.; Mayeda, T. K. (1984). "The oxygen isotope record in Murchison and other carbonaceous chondrites". Earth Planet. Sci. Lett. 67 (2): 151−61. Bibcode:1984E&PSL..67..151C. doi:10.1016/0012-821X(84)90110-9.
  53. ^ MacPherson, Glenn J., ed. (2008). Oxygen in the Solar System. Chantilly, VA: Mineralogical Society of America. ISBN 978-0-939950-80-5.
  54. ^ a b Ikeda Y.; Prinz M. (1993). "Petrologic study of the Belgica 7904 carbonaceous chondrite: Hydrous alteration, thermal metamorphism, and relation to CM and CI chondrites". Geochim. Cosmochim. Acta. 57: 439–52. doi:10.1016/0016-7037(93)90442-Y.
  55. ^ Kallemeyn, G.; Wasson, J. (1981). "The compositional classification of chondrites−I. The carbonaceous chondrite groups". Geochim. Cosmochim. Acta. 45 (7): 1217. Bibcode:1981GeCoA..45.1217K. doi:10.1016/0016-7037(81)90145-9.
  56. ^ a b c Tomeoka, K.; Buseck, P. R. (1988). "Matrix mineralogy of the Orgueil CI carbonaceous chondrite". Geochim. Cosmochim. Acta. 52 (6): 1627−40. Bibcode:1988GeCoA..52.1627T. doi:10.1016/0016-7037(88)90231-1.
  57. ^ a b c d Brearley, A. J. (1992). Mineralogy of fine grained matrix in the Ivuna CI carbonaceous chondrite. LPS XXIII. p. 153.
  58. ^ DuFresne, E. R.; Anders, E. (1962). "On the chemical evolution of the carbonaceous chondrites". Geochim. Cosmochim. Acta. 26 (11): 1085−1114. Bibcode:1962GeCoA..26.1085D. doi:10.1016/0016-7037(62)90047-9. hdl:2027/osu.32435006414775.
  59. ^ Richardson, S. M. (1978). "Vein formation in the C1 carbonaceous chondrites". Meteoritics. 13 (1): 141. Bibcode:1978Metic..13..141R. doi:10.1111/j.1945-5100.1978.tb00803.x.
  60. ^ Yang, J.; Epstein, S. (1983). "Interstellar organic matter in meteorites". Geochim. Cosmochim. Acta. 47 (12): 21992216. Bibcode:1983GeCoA..47.2199Y. doi:10.1016/0016-7037(83)90043-1.
  61. ^ Grady, M. M.; Wright, I. A. (2003). "Elemental and Isotopic Abundances of Carbon and Nitrogen in Meteorites". Sp. Sci. Rev. 106 (1): 231−48. Bibcode:2003SSRv..106..231G. doi:10.1023/A:1024645906350. S2CID 189792188.
  62. ^ Tartèse, R.; Chaussidon M.; Gurenko A.; Delarue F.; Robert F. (2018). "Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition". PNAS. 115 (34): 8535−40. Bibcode:2018PNAS..115.8535T. doi:10.1073/pnas.1808101115. PMC 6112742. PMID 30082400.
  63. ^ Ehrenfreund, P.; Glavin D. P.; Botta O.; Cooper G.; Bada J. L. (2001). "Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites". PNAS. 98 (5): 2138–2141. doi:10.1073/pnas.051502898. PMC 30105. PMID 11226205.
  64. ^ Pizzarello, S.; Williams L. B. (2012). "Ammonia in the Early Solar System: An Account From Carbonaceous Meteorites". Astrophys. J. 749 (2): 161. Bibcode:2012ApJ...749..161P. doi:10.1088/0004-637x/749/2/161.
  65. ^ Mazor E.; Heymann D.; Anders E. (1970). "Noble gases in carbonaceous chondrites". Geochim. Cosmochim. Acta. 34 (7): 781–24. Bibcode:1970GeCoA..34..781M. doi:10.1016/0016-7037(70)90031-1.
  66. ^ a b Wasson J. (1985). Meteorites: Their Record of Early Solar System History.
  67. ^ Frick U.; Moniot R. K. (1976). "Noble gases in ca residue from the Orgueil and Murray Met". Meteoritics. 11: 281.
  68. ^ Black D. C. (1972). "On the origins of trapped helium, neon and argon isotope variations in meteorites-II. Carbonaceous meteorites". Geochim. Cosmochim. Acta. 36 3 (3): 377–94. Bibcode:1972GeCoA..36..377B. doi:10.1016/0016-7037(72)90029-4.
  69. ^ Goswami J. N.; Lal D.; Wilkening L. L. (1984). "Gas-rich meteorites − probes for particle environments and dynamic processes in the inner solar system". Space Sci. Rev. 37 (1–2): 111–59. Bibcode:1984SSRv...37..111G. doi:10.1007/BF00213959. S2CID 121335431.
  70. ^ Schultz L.; Franke L. (2010). "Helium, neon, and argon in meteorites: A data collection" (PDF). Meteorit. Planet. Sci. 39 (11): 1889–90. doi:10.1111/j.1945-5100.2004.tb00083.x.
  71. ^ Fanale F. P.; Cannon W. A. (1974). "Surface properties of the Orgueil met: implications for the early history of sol sys volatiles". Geochim. Cosmochim. Acta. 38: 453. doi:10.1016/0016-7037(74)90137-9.
  72. ^ a b c Lewis, R. S.; Anders E. (1975). "Condensation time of the Solar Nebula from Extinct 129I in Primitive Meteorites". PNAS. 72 (1): 268–73. Bibcode:1975PNAS...72..268L. doi:10.1073/pnas.72.1.268. PMC 432285. PMID 16592213.
  73. ^ Frank, D.; Zolensky, M.; Martinez J.; Mikouchi T.; Ohsumi K.; Hagiya K.; Satake W.; Le L.; Ross D.; Peslier A. (2011). A CAI in the Ivuna CI1 Chondrite. 42nd LPSC. p. 2785.
  74. ^ Calvin, W. M.; King, T. V. V. (1997). "Spectral characteristics of iron-bearing phyllosilicates: Comparison to Orgueil (CI1), Murchison and Murray (CM2)". Meteorit. Planet. Sci. 32 (5): 693−701. doi:10.1111/j.1945-5100.1997.tb01554.x.
  75. ^ McSween, H. Y. Jr.; Richardson, S. M. (1977). "The composition of carbonaceous chondrite matrix". Geochim. Cosmochim. Acta. 41 (8): 1145−61. Bibcode:1977GeCoA..41.1145M. doi:10.1016/0016-7037(77)90110-7.
  76. ^ Larimer, J. W.; Anders, E. (1970). "Chemical fractionations in meteorites−III. Major element fractionations in chondrites". Geochim. Cosmochim. Acta. 34 (3): 367−87. Bibcode:1970GeCoA..34..367L. doi:10.1016/0016-7037(70)90112-2.
  77. ^ a b c Brearley A. J.; Prinz M. (1993). "CI chondrite-like clasts in the Nilpena polymict ureilite: Implications for aqueous alteration processes in CI chondrites". Geochim. Cosmochim. Acta. 56 (3): 1373–86. doi:10.1016/0016-7037(92)90068-T.
  78. ^ Bass, M. N. (1971). "Montmorillonite and serpentine in Orgueil meteorite". Geochim. Cosmochim. Acta. 35 (2): 139−47. Bibcode:1971GeCoA..35..139B. doi:10.1016/0016-7037(71)90053-6.
  79. ^ a b Keller L. P.; Thomas K. L.; McKay D. S. (1992). "An interplanetary dust particle with links to CI chondrites". Geochim. Cosmochim. Acta. 56 (3): 1409–12. Bibcode:1992GeCoA..56.1409K. doi:10.1016/0016-7037(92)90072-Q.
  80. ^ Beck, P.; Quirico, E.; Montes-Hernandez, G.; Bonal, L.; Bollard, J.; Orthous-Daunay F.-R.; Howard K. T.; Schmitt B.; Brissaud O.; Deschamps F.; Wunder B.; Guillot S. (2010). "Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids". Geochim. Cosmochim. Acta. 74 (16): 4881−92. Bibcode:2010GeCoA..74.4881B. doi:10.1016/j.gca.2010.05.020.
  81. ^ a b Akai J. (1988). "Incompletely transformed serpentine-type phyllosilicates in the matrix of Antarctic CM chondrites". Geochim. Cosmochim. Acta. 52 (6): 1593–99. Bibcode:1988GeCoA..52.1593A. doi:10.1016/0016-7037(88)90228-1.
  82. ^ a b King, A. J.; Schofield, P. F.; Howard, K. T.; Russell, S.S. (2015). "Modal mineralogy of CI and CI-like chondrites by X-ray diffraction". Geochim. Cosmochim. Acta. 165: 148−60. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038.
  83. ^ Zolensky, M. E.; Bourcier, W. L.; Gooding, J. L. (1978). "Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulation". Icarus. 2: 411−25.
  84. ^ Zolensky, M.; Barrett, R.; Browning, L. (1993). "Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites". Geochim. 57 (13): 3123−48. Bibcode:1993GeCoA..57.3123Z. doi:10.1016/0016-7037(93)90298-B.
  85. ^ Jones, C. L.; Brearley, A. J. (2006). "Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration". Geochim. 70 (4): 1040–1058. Bibcode:2006GeCoA..70.1040J. doi:10.1016/j.gca.2005.10.029.
  86. ^ Bischoff, A. (1998). "Aqueous Alteration of Carbonaceous Chondrites: Evidence for Preaccretionary Alteration". Meteorit. Planet. Sci. 33 (5): 1113−22. Bibcode:1998M&PS...33.1113B. doi:10.1111/J.1945-5100.1998.TB01716.X.
  87. ^ Tomeoka, K. (1990). "Phyllosilicate veins in a CI meteorite: evidence for aqueous alteration on the parent body". Nature. 345 (6271): 138−40. Bibcode:1990Natur.345..138T. doi:10.1038/345138a0. S2CID 4326128.
  88. ^ a b c Kerridge J. F. (1970). "Some observations on the nature of magnetite in the Orgueil meteorite". Earth Planet. Sci. Lett. 9 (4): 229–306. Bibcode:1970E&PSL...9..299K. doi:10.1016/0012-821X(70)90122-6.
  89. ^ a b c d Hua, X.; Buseck P. R. (1998). "Unusual forms of magnetite in the Orgueil carbonaceous chondrite". Meteorit. Planet. Sci. 33: A215-20. doi:10.1111/j.1945-5100.1998.tb01335.x.
  90. ^ McSween, H. Y. (1993). "Cosmic or Cosmuck?". Meteoritics. 28: 3. Bibcode:1993Metic..28....3M. doi:10.1111/j.1945-5100.1993.tb00238.x.
  91. ^ a b Tonui, E. K.; Zolensky, M. E.; Lipschutz, M. E.; Wang, M.-S.; Nakamura, T. (2003). "Yamato 86029: Aqueously altered and thermally metamorphosed CI-like chondrite with unusual textures". Meteorit. Planet. Sci. 38 (2): 269−92. Bibcode:2003M&PS...38..269T. doi:10.1111/j.1945-5100.2003.tb00264.x.
  92. ^ Bland P. A.; Travis B. J. (2017). "Giant convecting mud balls of the early solar system". Science Advances. 3 (7): e1602514. Bibcode:2017SciA....3E2514B. doi:10.1126/sciadv.1602514. PMC 5510966. PMID 28740862.
  93. ^ Morlok, A.; Bischoff A. Stephan T. Floss C. Zinner E. Jessberger E. K. (2006). "Brecciation and chemical heterogeneities of CI chondrites". Geochim. Cosmochim. Acta. 70 (21): 5371–94. Bibcode:2006GeCoA..70.5371M. doi:10.1016/j.gca.2006.08.007.
  94. ^ Wiik H. B. (1956). "The chemical composition of some stony meteorites". Geochim. Cosmochim. Acta. 9 (5): 279–89. Bibcode:1956GeCoA...9..279W. doi:10.1016/0016-7037(56)90028-X.
  95. ^ Day, K. L. (1974). "A possible identification of the 10 micron "silicate" feature". Astrophys. J. 192: L15. Bibcode:1974ApJ...192L..15D. doi:10.1086/181578.
  96. ^ Burton A. S.; Grunsfeld S.; Elsila J. E.; Glavin D. P.; Dworkin J. P. (2014). "The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites". Polar Science. 8 (3): 255. Bibcode:2014PolSc...8..255B. doi:10.1016/j.polar.2014.05.002.
  97. ^ Miyamoto, M. (1991). "Thermal metamorphism of CI and CM carbonaceous chondrites: An internal heating model". Meteoritics. 26 (2): 111−15. Bibcode:1991Metic..26..111M. doi:10.1111/j.1945-5100.1991.tb01026.x.
  98. ^ Yoldi-Martinez, Z.; Beck P.; Montes-Hernandez G.; Chiriac R.; Quirico E.; Bonal L.; Schmitt B.; Moynier F. (2011). Hydrous Mineralogy of Carbonaceous Chondrites from thermogravimetry analysis. 74th Meteoritical Society Meeting. p. 5329.
  99. ^ King, A.J.; Solomon J.R.; Schofield P.F. (2015). "Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy". EPS. 67: 198. Bibcode:2015EP&S...67..198K. doi:10.1186/s40623-015-0370-4. S2CID 2148318.
  100. ^ Britt, D. T.; Cannon K. M.; Donaldson Hanna K. (2019). "Simulated asteroid materials based on carbonaceous chondrite mineralogies". Meteorit. Planet. Sci. 54 (9): 2067–2082. Bibcode:2019M&PS...54.2067B. doi:10.1111/maps.13345. S2CID 198394834.
  101. ^ Fulle, M. N.; Altobelli B.; Buratti B.; Choukroun M.; Fulchignoni M.; Grün E.; Taylor M. G. G. T.; Weissman P. (2016). "Unexpected and significant findings in comet 67P/Churyumov–Gerasimenko: an interdisciplinary view". Mon. Not. R. Ast. Soc. 462 (Suppl_1): S2−8. doi:10.1093/mnras/stw1663.
  102. ^ Fulle, M.; Della Corte V.; Rotundi A.; Green S. F.; Accolla M.; Colangeli L.; Ferrari M.; Ivanovski S.; Sordini R.; Zakharov V. (2017). "The dust-to-ices ratio in comets and Kuiper belt objects". Mon. Not. R. Ast. Soc. 469 (Suppl_2): S45−49. doi:10.1093/mnras/stx983.
  103. ^ Fulle, M.; Blum J.; Green S. F.; Gundlach B.; Herique A.; Moreno F.; Mottola S.; Rotundi A.; Snodgrass C. (2019). "The refractory-to-ice mass ratio in comets". Mon. Not. R. Ast. Soc. 482 (3): 3326–40. doi:10.1093/mnras/sty2926.
  104. ^ Zolensky, M. E. & Thomas, K. L. (1995). GCA, 59, p. 4707–4712.
  105. ^ Tsuchiyama, A.; Miyake A.; Kawano J. (2018). "Nano-Sized CO2-H2O Fluid Inclusions in Calcite Grains of the Sutter's Mill CM Meteorite". 81st Meteoritical Society. 81 (2067): 6187. Bibcode:2018LPICo2067.6187T.
  106. ^ Tsuchiyama, A.; Miyake A.; Okuzumi S.; Kitayama A.; Kawano J.; Uesugi K.; Takeuchi A.; Nakano T.; Zolensky M. (2021). "Discovery of primitive CO2-bearing fluid in an aqueously altered carbonaceous chondrite". Science Advances. 7 (17): eabg9707. Bibcode:2021SciA....7.9707T. doi:10.1126/sciadv.abg9707. PMC 8059924. PMID 33883146.
  107. ^ Saylor, J.; Zolensky M.; Bodnar R.; Le L.; Schwandt C. (2001). Fluid Inclusions in Carbonaceous Chondrites. LPS XXXII. p. 1875.
  108. ^ Zolensky, M. E.; Bodnar R. J.; Yurimoto H.; Itoh S.; Fries M.; Steele A.; Chan Q. H.-S.; Tsuchiyama A.; Kebukawa Y.; Ito M. (2017). "The search for and analysis of direct samples of early Solar System aqueous fluids". Phil. Trans. R. Soc. A. 375 (2094): 20150386. Bibcode:2017RSPTA.37550386Z. doi:10.1098/rsta.2015.0386. PMC 5394253. PMID 28416725.
  109. ^ a b Rahmdor, P. (1963). "The Opaque Minerals in Stony Meteorites". J. Geophys. Res. 68 (7): 2011. Bibcode:1963JGR....68.2011R. doi:10.1029/JZ068i007p02011. very common" "characteristic
  110. ^ Alfing, J.; Patzek, M.; Bischoff, A. (2019). "Modal Abundances of coarse-grained (>5um) components within CI-chondrites and their individual clasts − Mixing of various lithologies on the CI parent body(ies)". Geochemistry. 79 (4): 125532. doi:10.1016/j.chemer.2019.08.004. S2CID 202041205.
  111. ^ a b c Jedwab, J. (1967). "La Magnetite en Plaquettes des Meteorites carbonees D'Alais, Ivuna et Orgueil". Earth Planet. Sci. Lett. 2 (5): 440–444. Bibcode:1967E&PSL...2..440J. doi:10.1016/0012-821X(67)90186-0.
  112. ^ Kerridge, J. F.; Chatterji S. (1968). "Magnetite Content of a Type I Carbonaceous Meteorite". Nature. 220 (5169): 775–76. Bibcode:1968Natur.220R.775K. doi:10.1038/220775b0. S2CID 4192603.
  113. ^ a b Jedwab, J. (1971). "La Magnetite de la Meteorite D'Orgueil Vue au Microscope Electronique a Balayage". Icarus. 15 (2): 319–45. Bibcode:1971Icar...15..319J. doi:10.1016/0019-1035(71)90083-2.
  114. ^ Larson E .E.; Watson D. E.; Herndon J. M.; Rowe M. W. (1974). "Thermomagnetic analysis of meteorites, 1. C1 chondrites". EPSL. 21 (4): 345–50. Bibcode:1974E&PSL..21..345L. doi:10.1016/0012-821X(74)90172-1. hdl:2060/19740018171. presumably FeS
  115. ^ Watson D. E.; Larson E. E.; Herndon J. M.; Rowe M. W. (1975). "Thermomag anal of meteorites, 2. C2 chondrites". Earth Planet. Sci. Lett. 27: 101–07. doi:10.1016/0012-821X(75)90167-3. hdl:2060/19740018171.
  116. ^ a b Hyman M.; Rowe M. W. (1983). "Magnetite in CI chondrites". J. Geophys. Res. 88: A736-40. Bibcode:1983LPSC...13..736H. doi:10.1029/JB088iS02p0A736.
  117. ^ a b c d Gounelle, M.; Zolensky M. E. (2014). "The Orgueil meteorite: 150 years of history". Meteoritics & Planetary Sci. 49 (10): 1769−94. Bibcode:2014M&PS...49.1769G. doi:10.1111/maps.12351.
  118. ^ Rowe M. W.; Clayton R. N. Mayeda T. K. (1994). "Oxygen Isotopes in Separated Components of CI and CM Meteorites". Geochim. Cosmochim. Acta. 58 (23): 5341–47. Bibcode:1994GeCoA..58.5341R. doi:10.1016/0016-7037(94)90317-4.
  119. ^ Lancet M. S.; Anders E. (1973). "Solubilities of no gas in mag: imply for plan gas in meteorites". Geochim. Cosmochim. Acta. 37: 1371–88. doi:10.1016/0016-7037(73)90067-7.
  120. ^ Mason, B.: Meteorites. John Wiley and Son Inc., New York 1962.
  121. ^ Von Michaelis, H., Ahrens, I. H. & Willis, J.P.: The compositions of stony meteorites – II. The analytical data and an assessment of their quality. In: Earth and Planetary Scientific Letters. 5, 1969.
  122. ^ Van Schmus, W. R. & Hayes, J. M.: Chemical and petrographic correlations among carbonaceous chondrites. In: Geochimica Cosmochimica Acta. 38, 1974.
  123. ^ Dodd, R. T.: Meteorites: A Petrologic-Chemical Synthesis. Cambridge University Press, New York 1981
  124. ^ a b Wilkening, L. L. (1978). "Carbonaceous Chondritic Material in the Solar System". Die Naturwissenschaften. 65 (2): 73–79. Bibcode:1978NW.....65...73W. doi:10.1007/BF00440544. S2CID 34989594.
  125. ^ Chapman, C. R. (1976). "Asteroids as meteorite parent bodies: the astronomical perspective". Geochim. Cosmochim. Acta. 40 (7): 701–19. Bibcode:1976GeCoA..40..701C. doi:10.1016/0016-7037(76)90024-7.
  126. ^ Cloutis, E. A.; Gaffey M. J.; Smith D. G. W.; Lambert R. S. J. (1990). "Reflectance spectra of "featureless" materials and the surface mineralogies of M- and E-class asteroids". J. Geophys. Res. 95: 281−94. Bibcode:1990JGR....95..281C. doi:10.1029/JB095iB01p00281. hdl:10680/1399.
  127. ^ a b Brownlee, D. E. (1985). "Cosmic Dust: Collection and Research". Annual Review of Earth and Planetary Sciences. 13: 147−73. Bibcode:1985AREPS..13..147B. doi:10.1146/annurev.ea.13.050185.001051.
  128. ^ Kurat, G.; Koeberl C. Presper T. Brandstatter F. Maurette M. (1994). "Petrology and geochemistry of Antarctic micrometeorites". Geochim. Cosmochim. Acta. 58 (18): 3879−3904. Bibcode:1994GeCoA..58.3879K. doi:10.1016/0016-7037(94)90369-7.
  129. ^ Ebel, D. S.; Grossman L. (2000). "Condensation in dust-enriched systems". Geochim. Cosmochim. Acta. 64 (2): 339−66. Bibcode:2000GeCoA..64..339E. doi:10.1016/S0016-7037(99)00284-7.
  130. ^ McSween, H. Y.; Emery J. P. Rivkin A. S. Toplis M. J. Castillo-Rogez J. C. Prettyman T. H. De Sanctis M. C. Pieters C. M. Raymond C. A. Russell C. T. (2018). "Carbonaceous chondrites as analogs for the composition and alteration of Ceres". Meteorit. Planet. Sci. 53 (9): 1793−1804. Bibcode:2018M&PS...53.1793M. doi:10.1111/maps.12947.
  131. ^ Chan, Q. H.-S.; Zolensky M. E. (2018). "Organic matter in extraterrestrial water-bearing salt crystals". Science Advances. 4 (1): eaao3521. Bibcode:2018SciA....4.3521C. doi:10.1126/sciadv.aao3521. PMC 5770164. PMID 29349297.
  132. ^ Anders, E. (1971). "Interrelations of meteorites, asteroids, and comets". In Gehrels, T. (ed.). Physical studies of minor planets. NASA. p. 429.
  133. ^ Anders, E. (1975). "Do stony meteorites come from comets". Icarus. 24 (3): 363−71. Bibcode:1975Icar...24..363A. doi:10.1016/0019-1035(75)90132-3.
  134. ^ Zolensky, M.; Nakamura‐Messenger K.; Rietmeijer F.; Leroux H.; Mikouchi T.; Ohsumi K.; et al. (2008). "Comparing Wild 2 particles to chondrites and IDPs". Meteorit. Planet. Sci. 43 (1): 261−72. Bibcode:2008M&PS...43..261Z. doi:10.1111/j.1945-5100.2008.tb00621.x. hdl:2060/20080013409.
  135. ^ Campins, H.; Swindle T. D. (1998). "Expected characteristics of cometary meteorites". Meteorit. Planet. Sci. 33 (6): 1201−11. Bibcode:1998M&PS...33.1201C. doi:10.1111/j.1945-5100.1998.tb01305.x.
  136. ^ Lodders, K.; Osborne R. (1999). "Perspectives on the Comet-Asteroid-Meteorite Link". Space Science Reviews. 90: 289−97. Bibcode:1999SSRv...90..289L. doi:10.1023/A:1005226921031. S2CID 189789172.
  137. ^ Gounelle, M.; Morbidelli A. Bland P. A. Spurny P. Young E. D. Sephton M. A. (2008). "Meteorites from the Outer Solar System?". In Barucci M. A. Boehnhardt H. Cruikshank D. P. Morbidelli A. (ed.). The Solar System Beyond Neptune. Tucson: University of Arizona Press. pp. 525−41. ISBN 978-0-8165-2755-7.
  138. ^ Gounelle, M.; Spurny P. Bland P. A. (2006). "The atmospheric trajectory and orbit of the Orgueil meteorite". Meteoritics & Planetary Sci. 41: 13550. doi:10.1111/j.1945-5100.2006.tb00198.x.
  139. ^ Hartmann, W. K.; Cruikshank D. P. Degewij J. (1982). "Remote comets and related bodies: VJHK colorimetry and surface materials". Icarus. 52 (3): 377−408. Bibcode:1982Icar...52..377H. doi:10.1016/0019-1035(82)90002-1.
  140. ^ Gounelle, M. (2011). "The asteroid-comet continuum". Elements. 7: 29−34. doi:10.2113/gselements.7.1.29.
  141. ^ Zolensky, M. E.; Bodnar R. J. Gibson E. Nyquist (1999). "Asteroidal Water Within Fluid Inclusion–Bearing Halite in an H5 Chondrite, Monahans (1998)". Science. 285 (5432): 1377−9. Bibcode:1999Sci...285.1377Z. doi:10.1126/science.285.5432.1377. PMID 10464091.
  142. ^ Yurimoto, H.; Itoh S. Zolensky M. Kusakabe M. Karen A. Bodnar R. (2014). "Isotopic compositions of asteroidal liquid water trapped in fluid inclusions of chondrites". Geochemical Journal. 48 (6): 549−60. Bibcode:2014GeocJ..48..549Y. doi:10.2343/geochemj.2.0335.
  143. ^ Ikeda, Y. (1992). "An overview of the research consortium, "Antarctic carbonaceous chondrites with CI affinities, Yamato-86720, Yamato-82162, and Belgica-7904"". Proceedings, NIPR Symp. Antarctic Meteorites. 5: 49–73. Bibcode:1992AMR.....5...49I.
  144. ^ Wasson, J. T. (1974). Meteorites: Classification and Properties. Springer. ISBN 978-3-642-65865-5.
  145. ^ Weisberg, M. K. (2006). Systematics and Evaluation of Meteorite Classification. Tucson: University of Arizona Press. p. 19. ISBN 9780816525621.
  146. ^ Hutchison, R. (2004). Meteorites: A Petrologic, Chemical, and Isotopic Synthesis. Cambridge: Cambridge University Press. ISBN 0-521-47010-2.
  147. ^ King, A. J. (2015). "Modal Mineralogy of CI and CI-Like Chondrites by X-ray Diffraction". Geochim. Cosmochim. Acta. 165: 148–60. Bibcode:2015GeCoA.165..148K. doi:10.1016/j.gca.2015.05.038.
  148. ^ King, A. J. (2015). "Characterising the CI and CI-like carbonaceous chondrites using thermogravimetric analysis and infrared spectroscopy". Earth, Planets and Space. 67: 198. Bibcode:2015EP&S...67..198K. doi:10.1186/s40623-015-0370-4. S2CID 2148318.
  149. ^ Kallemeyn, G. W.; Kerridge, J. F. (1983). "Kaidun: A new chondrite related to the CI group?". Meteoritics. 18 (4): 322.
  150. ^ Brown, P. G.; Hildebrand, A. R.; Zolensky, M. E. (2002). "Tagish Lake". Meteoritics & Planetary Science. 37 (5): 619–21. Bibcode:2002M&PS...37..619B. doi:10.1111/j.1945-5100.2002.tb00843.x.
  151. ^ Zolensky, M. E.; Nakamura, K.; Gounelle, M. (2002). "Mineralogy of Tagish Lake: An ungrouped type 2 carbonaceous chondrite". Meteoritics & Planetary Science. 37 (5): 737–61. Bibcode:2002M&PS...37..737Z. doi:10.1111/j.1945-5100.2002.tb00852.x.
  152. ^ Mittlefehldt, D. W. (2002). "Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite Bells, and comparison with CI and CM chondrites". Meteoritics & Planetary Science. 37 (5): 703–12. Bibcode:2002M&PS...37..703M. doi:10.1111/j.1945-5100.2002.tb00850.x.
  153. ^ Grady, M. M.; Verchofsky, A. B.; Franchi, I. A. (2002). "Light element geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites". Meteoritics & Planetary Science. 37 (5): 713–35. Bibcode:2002M&PS...37..713G. doi:10.1111/j.1945-5100.2002.tb00851.x.
  154. ^ Clayton, R. N.; Mayeda, T. K. (2001). Oxygen isotope composition of the Tagish Lake carbonaceous chondrite. Lunar and Planetary Sciences Conf. 32. p. 1885.
  155. ^ Engrand, C.; Gounelle, M.; Duprat, J; Zolensky, M. E. (2001). "In situ Oxygen Isotope Composition of Individual Minerals in Tagish Lake, A unique type 2 Carbonaceous Meteorite". Lunar and Planetary Sciences Conf. 32: 1568. Bibcode:2001LPI....32.1568E.
  156. ^ Ushikubo, T.; Kimura, M. (2020). "Oxygen-isotope systematics of chondrules and olivine fragments from Tagish Lake C2 chondrite: Implications of chondrule-forming regions in protoplanetary disk". Geochimica et Cosmochimica Acta. 293: 328–43. doi:10.1016/j.gca.2020.11.003. S2CID 228875252.
  157. ^ Friedrich, J. M.; Wang, M.-S.; Lipschutz, M. E. (2002). "Comparison of the trace element composition of Tagish Lake with other primitive carbonaceous chondrites". Meteoritics & Planetary Science. 37 (5): 677–86. Bibcode:2002M&PS...37..677F. doi:10.1111/j.1945-5100.2002.tb00847.x.
  158. ^ Ash, R. D.; Walker, R. J.; Puchtel, I. S.; McDonough, W. F.; Irving, A. J. (March 2011). The Trace Element Chemistry of Northwest Africa 5958, a Curious Primitive Carbonaceous Chondrite. 42nd LPSC. p. 2325.
  159. ^ Jacquet, E. (2016). "Northwest Africa 5958: A Weakly Altered CM-Related Ungrouped Chondrite, Not a CI3". Meteoritics & Planetary Science. 51 (5): 851–69. arXiv:1702.05955. Bibcode:2016M&PS...51..851J. doi:10.1111/maps.12628. S2CID 119423628.