![]() | |
Names | |
---|---|
IUPAC name
9,10-Dimethoxy-2′H-[1,3]dioxolo[4′,5′:2,3]berbine
| |
Systematic IUPAC name
(13aS)-9,10-Dimethoxy-5,8,13,13a-tetrahydro-2H,6H-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinoline | |
Other names
(S)-Tetrahydroberberine; Xanthopuccine
| |
Identifiers | |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.023.468 |
KEGG | |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C20H21NO4 | |
Molar mass | 339.391 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
(S)-Canadine, also known as (S)-tetrahydroberberine and xanthopuccine, is a benzylisoquinoline alkaloid (BIA), of the protoberberine structural subgroup, and is present in many plants from the family Papaveraceae, such as Corydalis yanhusuo and C. turtschaninovii.
Metabolically, (S)-canadine is derived from (S)-reticuline, a pivotal intermediate in the biosynthesis of numerous BIA structural subgroups, through three enzymatic steps: 1) Berberine bridge enzyme to (S)-scoulerine; 2) (S)-scoulerine 9-O-methyltransferase to (S)-tetrahydrocolumbamine; and 3) (S)-canadine synthase/CYP719A21 to (S)-canadine.[1]
(S)-Canadine is the immediate metabolic precursor of berberine, which is obtained through the action of the enzyme (S)-tetrahydroprotoberberine oxidase.[1] It is also an intermediate in the complex biosynthesis of noscapine, which is likewise a benzylisoquinoline alkaloid, but of the phthalideisoquinoline structural subgroup.[2][3]
(S)-Canadine, berberine, palmatine, and hydrastine are the major alkaloids present in goldenseal.
A number of in vitro effects of (S)-canadine have been reported. It stimulates myogenesis and inhibits muscle protein degradation.[4] (S)-Canadine blocks K(ATP) channels in dopamine neurons.[5][6] (S)-Canadine has displayed antioxidant activity: though it lacked any demonstrable cytotoxic effect in three unique cell cultures, it was observed to possess antioxidant activity against free radical-induced oxidative injury.[7][8] (S)-Canadine can block voltage-dependent calcium channels, but at a level significantly lower than that of verapamil.[9]