This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: "Diversity" mathematics – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: "Diversity" mathematics – news · newspapers · books · scholar · JSTOR (December 2022) (Learn how and when to remove this template message)

In mathematics, a diversity is a generalization of the concept of metric space. The concept was introduced in 2012 by Bryant and Tupper,[1] who call diversities "a form of multi-way metric".[2] The concept finds application in nonlinear analysis.[3]

Given a set , let be the set of finite subsets of . A diversity is a pair consisting of a set and a function satisfying

(D1) , with if and only if

and

(D2) if then .

Bryant and Tupper observe that these axioms imply monotonicity; that is, if , then . They state that the term "diversity" comes from the appearance of a special case of their definition in work on phylogenetic and ecological diversities. They give the following examples:

Diameter diversity

Let be a metric space. Setting for all defines a diversity.

diversity

For all finite if we define then is a diversity.

Phylogenetic diversity

If T is a phylogenetic tree with taxon set X. For each finite , define as the length of the smallest subtree of T connecting taxa in A. Then is a (phylogenetic) diversity.

Steiner diversity

Let be a metric space. For each finite , let denote the minimum length of a Steiner tree within X connecting elements in A. Then is a diversity.

Truncated diversity

Let be a diversity. For all define . Then if , is a diversity.

Clique diversity

If is a graph, and is defined for any finite A as the largest clique of A, then is a diversity.

References

  1. ^ Bryant, David; Tupper, Paul (2012). "Hyperconvexity and tight-span theory for diversities". Advances in Mathematics. 231 (6): 3172–3198. arXiv:1006.1095. doi:10.1016/j.aim.2012.08.008.
  2. ^ Bryant, David; Tupper, Paul (2014). "Diversities and the geometry of hypergraphs". Discrete Mathematics and Theoretical Computer Science. 16 (2): 1–20. arXiv:1312.5408.
  3. ^ Espínola, Rafa; Pia̧tek, Bożena (2014). "Diversities, hyperconvexity, and fixed points". Nonlinear Analysis. 95: 229–245. doi:10.1016/j.na.2013.09.005. hdl:11441/43016. S2CID 119167622.