The solution-friction (SF) model is a mechanistic transport model developed to describe the transport processes across porous membranes, such as reverse osmosis (RO) and nanofiltration (NF).[1] [2] [3] Unlike traditional models, such as those based on Darcy’s law, which primarily describes pressure-driven solvent (water) transport in homogeneous porous mediums, the SF model also accounts for the coupled transport of both solvent (water) and solutes (salts).

Overview

The solution-friction model is predicated on a pore-flow or viscous flow mechanism but extends its applicability by incorporating the force balances on the species transporting through the membrane. This inclusion allows for a detailed understanding of the interdependent fluxes of water and salt, influenced by interactions between salt ions and water molecules. The SF model has been able to successfully describe the transport of water and salt in RO membranes, showing good agreement with experiments.[1] [4] [5][6] The development of the SF model also corrects the misconception that RO water transport is a diffusion-based process. [2] [7] Detailed information on the solution-friction model and its application is available in the references. [2] [8]

Ion Transport

Ion transport through the RO membrane is driven by the gradient of chemical potential within the membrane. The solution-friction model represents this transport by considering the frictions between ions, ions and water, and ions and membrane. The force balance for an ion is given by the equation: [2]

Note that the membrane is stationary and its velocity is therefore set to zero. By considering only the coordinate perpendicular to the membrane surface, the ion flux () governed by diffusion, electromigration, and advection can be expressed as [2]

Water Transport

Water transport is governed by the gradient in total pressure, counterbalanced by water-membrane and ion-water frictions. The balance is expressed as [2]

Substituting the expression of ion velocity into water velocity, we arrive at the following expression for the force balance on water:


When ion-membrane friction is negligible (i.e.,), this equation can be written as

A simplification can be made when a membrane has a low volumetric charge density (i.e., within the membrane), like in typical RO membranes. Therefore, the electrical potential gradient can be neglected as it is relatively small compared to the concentration gradient. The equation for water flux can be eventually simplified as

Defining and , we obtain the water permeability velocity as

This equation is identical in form to the Spiegler-Kedem-Katchalsky equation, [9] [10] a classic model in irreversible thermodynamics for water transport through semipermeable membranes. This ensures that the SF model aligns with the basic thermodynamic principles.

References

  1. ^ a b Wang, L., Cao, T., Dykstra, J. E., Porada, S., Biesheuvel, P. M., & Elimelech, M. (2021). Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model. Environmental Science & Technology, 55(24), 16665-16675. (2022).
  2. ^ a b c d e f Heiranian, M., Fan, H., Wang, L., Lu, X., & Elimelech, M. (2023). Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chemical Society Reviews.
  3. ^ Oren, Y. S., & Biesheuvel, P. M. (2018). Theory of ion and water transport in reverse-osmosis membranes. Physical Review Applied, 9(2), 024034.
  4. ^ Biesheuvel, P. M., Dykstra, J. E., Porada, S., & Elimelech, M. (2022). New parametrization method for salt permeability of reverse osmosis desalination membranes. Journal of Membrane Science Letters, 2(1), 100010.
  5. ^ Wang, L., He, J., Heiranian, M., Fan, H., Song, L., Li, Y., & Elimelech, M. (2023). Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Science Advances, 9(15), eadf8488.
  6. ^ Du, Y., Wang, L., Belgada, A., Younssi, S. A., Gilron, J., & Elimelech, M. (2023). A mechanistic model for salt and water transport in leaky membranes: Implications for low-salt-rejection reverse osmosis membranes. Journal of Membrane Science, 678, 121642.
  7. ^ Levy, Max G. "Everyone Was Wrong About Reverse Osmosis—Until Now". Wired.
  8. ^ https://www.physicsofelectrochemicalprocesses.com/
  9. ^ Kedem, O., & Katchalsky, A. (1958). Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochimica et biophysica Acta, 27, 229-246.
  10. ^ Spiegler, K. S., & Kedem, O. (1966). Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination, 1(4), 311-326.