Dynamin-like 120 kDa protein, mitochondrial is a protein that in humans is encoded by the OPA1gene.[5][6] This protein regulates mitochondrial fusion and cristae structure in the inner mitochondrial membrane (IMM) and contributes to ATP synthesis and apoptosis,[7][8][9] and small, round mitochondria.[10] Mutations in this gene have been implicated in dominant optic atrophy (DOA), leading to loss in vision, hearing, muscle contraction, and related dysfunctions.[6][7][11]
Eight transcript variants encoding different isoforms, resulting from alternative splicing of exon 4 and two novel exons named 4b and 5b, have been reported for this gene.[6] They fall under two types of isoforms: long isoforms (L-OPA1), which attach to the IMM, and short isoforms (S-OPA1), which localize to the intermembrane space (IMS) near the outer mitochondrial membrane (OMM).[12] S-OPA1 is formed by proteolysis of L-OPA1 at the cleavage sites S1 and S2, removing the transmembrane domain.[9]
This gene product is a nuclear-encoded mitochondrial protein with similarity to dynamin-related GTPases. It is a component of the mitochondrial network.[6] The OPA1 protein localizes to the inner mitochondrial membrane, where it regulates mitochondrial fusion and cristae structure.[7] OPA1 mediates mitochondrial fusion in cooperation with mitofusins 1 and 2 and participates in cristae remodeling by the oligomerization of two L-OPA1 and one S-OPA1, which then interact with other protein complexes to alter cristae structure.[8][13] Its cristae regulating function also contributes to its role in oxidative phosphorylation and apoptosis, as it is required to maintain mitochondrial activity during low-energy substrate availability.[7][8][9] Moreover, stabilization of mitochondrial cristae by OPA1 protects against mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production, thus preventing cell death.[14] Mitochondrial SLC25A transporters can detect these low levels and stimulate OPA1 oligomerization, leading to tightening of the cristae, enhanced assembly of ATP synthase, and increased ATP production.[8] Stress from an apoptotic response can interfere with OPA1 oligomerization and prevent mitochondrial fusion.[9]
Mutations in this gene have been associated with optic atrophy type 1, which is a dominantly inherited optic neuropathy resulting in progressive loss of visual acuity, leading in many cases to legal blindness.[6] Dominant optic atrophy (DOA) in particular has been traced to mutations in the GTPase domain of OPA1, leading to sensorineural hearing loss, ataxia, sensorimotor neuropathy, progressive external ophthalmoplegia, and mitochondrial myopathy.[7][11] As the mutations can lead to degeneration of auditory nerve fibres, cochlear implants provide a therapeutic means to improve hearing thresholds and speech perception in patients with OPA1-derived hearing loss.[7]
Mitochondrial fusion involving OPA1 and MFN2 may be associated with Parkinson's disease.[11]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Votruba M, Moore AT, Bhattacharya SS (Jan 1998). "Demonstration of a founder effect and fine mapping of dominant optic atrophy locus on 3q28-qter by linkage disequilibrium method: a study of 38 British Isles pedigrees". Human Genetics. 102 (1): 79–86. doi:10.1007/s004390050657. PMID9490303. S2CID26060748.
Olichon A, Guillou E, Delettre C, Landes T, Arnauné-Pelloquin L, Emorine LJ, Mils V, Daloyau M, Hamel C, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Belenguer P (2006). "Mitochondrial dynamics and disease, OPA1". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1763 (5–6): 500–9. doi:10.1016/j.bbamcr.2006.04.003. PMID16737747.
Pawlikowska P, Orzechowski A (2007). "[Role of transmembrane GTPases in mitochondrial morphology and activity]". Postepy Biochemii. 53 (1): 53–9. PMID17718388.
Johnston RL, Seller MJ, Behnam JT, Burdon MA, Spalton DJ (Jan 1999). "Dominant optic atrophy. Refining the clinical diagnostic criteria in light of genetic linkage studies". Ophthalmology. 106 (1): 123–8. doi:10.1016/S0161-6420(99)90013-1. PMID9917792.
Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (Oct 2000). "Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy". Nature Genetics. 26 (2): 207–10. doi:10.1038/79936. PMID11017079. S2CID24514847.
Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (Oct 2000). "OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28". Nature Genetics. 26 (2): 211–5. doi:10.1038/79944. PMID11017080. S2CID8314863.
Thiselton DL, Alexander C, Morris A, Brooks S, Rosenberg T, Eiberg H, Kjer B, Kjer P, Bhattacharya SS, Votruba M (Nov 2001). "A frameshift mutation in exon 28 of the OPA1 gene explains the high prevalence of dominant optic atrophy in the Danish population: evidence for a founder effect". Human Genetics. 109 (5): 498–502. doi:10.1007/s004390100600. PMID11735024. S2CID23854938.
Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenz B, Faivre L, Lenaers G, Belenguer P, Hamel CP (Dec 2001). "Mutation spectrum and splicing variants in the OPA1 gene". Human Genetics. 109 (6): 584–91. doi:10.1007/s00439-001-0633-y. PMID11810270. S2CID19099209.
Aung T, Ocaka L, Ebenezer ND, Morris AG, Krawczak M, Thiselton DL, Alexander C, Votruba M, Brice G, Child AH, Francis PJ, Hitchings RA, Lehmann OJ, Bhattacharya SS (Jan 2002). "A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene". Human Genetics. 110 (1): 52–6. doi:10.1007/s00439-001-0645-7. PMID11810296. S2CID20733038.
Thiselton DL, Alexander C, Taanman JW, Brooks S, Rosenberg T, Eiberg H, Andreasson S, Van Regemorter N, Munier FL, Moore AT, Bhattacharya SS, Votruba M (Jun 2002). "A comprehensive survey of mutations in the OPA1 gene in patients with autosomal dominant optic atrophy". Investigative Ophthalmology & Visual Science. 43 (6): 1715–24. PMID12036970.
Aung T, Ocaka L, Ebenezer ND, Morris AG, Brice G, Child AH, Hitchings RA, Lehmann OJ, Bhattacharya SS (May 2002). "Investigating the association between OPA1 polymorphisms and glaucoma: comparison between normal tension and high tension primary open angle glaucoma". Human Genetics. 110 (5): 513–4. doi:10.1007/s00439-002-0711-9. PMID12073024. S2CID13588421.
Satoh M, Hamamoto T, Seo N, Kagawa Y, Endo H (Jan 2003). "Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria". Biochemical and Biophysical Research Communications. 300 (2): 482–93. doi:10.1016/S0006-291X(02)02874-7. PMID12504110.
Shimizu S, Mori N, Kishi M, Sugata H, Tsuda A, Kubota N (Feb 2003). "A novel mutation in the OPA1 gene in a Japanese patient with optic atrophy". American Journal of Ophthalmology. 135 (2): 256–7. doi:10.1016/S0002-9394(02)01929-3. PMID12566046.