Engineering ethics is the field of system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. As a scholarly discipline, it is closely related to subjects such as the philosophy of science, the philosophy of engineering, and the ethics of technology.

Background and origins

Up to the 19th century and growing concerns

The first Tay Bridge collapsed in 1879. At least sixty were killed.

As engineering rose as a distinct profession during the 19th century, engineers saw themselves as either independent professional practitioners or technical employees of large enterprises. There was considerable tension between the two sides as large industrial employers fought to maintain control of their employees.[1]

In the United States growing professionalism gave rise to the development of four founding engineering societies: The American Society of Civil Engineers (ASCE) (1851), the American Institute of Electrical Engineers (AIEE) (1884),[2] the American Society of Mechanical Engineers (ASME) (1880), and the American Institute of Mining Engineers (AIME) (1871).[3] ASCE and AIEE were more closely identified with the engineer as learned professional, where ASME, to an extent, and AIME almost entirely, identified with the view that the engineer is a technical employee.[4]

Even so, at that time ethics was viewed as a personal rather than a broad professional concern.[5][6]: 6 

Turn of the 20th century and turning point

The Boston molasses disaster provided a strong impetus for the establishment of professional licensing and codes of ethics in the United States.

When the 19th century drew to a close and the 20th century began, there had been series of significant structural failures, including some spectacular bridge failures, notably the Ashtabula River Railroad Disaster (1876), Tay Bridge Disaster (1879), and the Quebec Bridge collapse (1907). These had a profound effect on engineers and forced the profession to confront shortcomings in technical and construction practice, as well as ethical standards.[7]

One response was the development of formal codes of ethics by three of the four founding engineering societies. AIEE adopted theirs in 1912. ASCE and ASME did so in 1914.[8] AIME did not adopt a code of ethics in its history.[4]

Concerns for professional practice and protecting the public highlighted by these bridge failures, as well as the Boston molasses disaster (1919), provided impetus for another movement that had been underway for some time: to require formal credentials (Professional Engineering licensure in the US) as a requirement to practice. This involves meeting some combination of educational, experience, and testing requirements.[9]

In 1950, the Association of German Engineers developed an oath for all its members titled 'The Confession of the Engineers', directly hinting at the role of engineers in the atrocities committed during World War II.[10][11][12]

Over the following decades most American states and Canadian provinces either required engineers to be licensed, or passed special legislation reserving title rights to organization of professional engineers.[13] The Canadian model is to require all persons working in fields of engineering that posed a risk to life, health, property, the public welfare and the environment to be licensed, and all provinces required licensing by the 1950s.

The US model has generally been only to require the practicing engineers offering engineering services that impact the public welfare, safety, safeguarding of life, health, or property to be licensed, while engineers working in private industry without a direct offering of engineering services to the public or other businesses, education, and government need not be licensed.[14] This has perpetuated the split between professional engineers and those in private industry.[15] Professional societies have adopted generally uniform codes of ethics.

Recent developments

William LeMessurier's response to design deficiencies uncovered after construction of the Citigroup Center is often cited as an example of ethical conduct.

Efforts to promote ethical practice continue. In addition to the professional societies and chartering organizations efforts with their members, the Canadian Iron Ring and American Order of the Engineer trace their roots to the 1907 Quebec Bridge collapse. Both require members to swear an oath to uphold ethical practice and wear a symbolic ring as a reminder.

In the United States, the National Society of Professional Engineers released in 1946 its Canons of Ethics for Engineers and Rules of Professional Conduct, which evolved to the current Code of Ethics, adopted in 1964. These requests ultimately led to the creation of the Board of Ethical Review in 1954. Ethics cases rarely have easy answers, but the BER's nearly 500 advisory opinions have helped bring clarity to the ethical issues engineers face daily.[16]

Currently, bribery and political corruption is being addressed very directly by several professional societies and business groups around the world.[17][18] However, new issues have arisen, such as offshoring, sustainable development, and environmental protection, that the profession is having to consider and address.

General principles

Engineers, in the fulfillment of their professional duties, shall hold paramount the safety, health, and welfare of the public

— National Society of Professional Engineers, [19]

A practitioner shall regard the practitioner's duty to public welfare as paramount."

— Professional Engineers Ontario, [20]

Codes of engineering ethics identify a specific precedence with respect to the engineer's consideration for the public, clients, employers, and the profession.

Many engineering professional societies have prepared codes of ethics. Some date to the early decades of the twentieth century.[13] These have been incorporated to a greater or lesser degree into the regulatory laws of several jurisdictions. While these statements of general principles served as a guide, engineers still require sound judgment to interpret how the code would apply to specific circumstances.

The general principles of the codes of ethics are largely similar across the various engineering societies and chartering authorities of the world,[21] which further extend the code and publish specific guidance.[22] The following is an example from the American Society of Civil Engineers:[23]

  1. Engineers shall hold paramount the safety, health and welfare of the public and shall strive to comply with the principles of sustainable development in the performance of their professional duties.[23]
  2. Engineers shall perform services only in areas of their competence.[23]
  3. Engineers shall issue public statements only in an objective and truthful manner.[23]
  4. Engineers shall act in professional matters for each employer or client as faithful agents or trustees, and shall avoid conflicts of interest.[23]
  5. Engineers shall build their professional reputation on the merit of their services and shall not compete unfairly with others.
  6. Engineers shall act in such a manner as to uphold and enhance the honor, integrity, and dignity of the engineering profession and shall act with zero-tolerance for bribery, fraud, and corruption.[23]
  7. Engineers shall continue their professional development throughout their careers, and shall provide opportunities for the professional development of those engineers under their supervision.[23]
  8. Engineers shall, in all matters related to their profession, treat all persons fairly and encourage equitable participation without regard to gender or gender identity, race, national origin, ethnicity, religion, age, sexual orientation, disability, political affiliation, or family, marital, or economic status.[24]

In 1990, EPFL students elaborated the Archimedean Oath, which is an ethical code of practice for engineers and technicians, similar to the Hippocratic Oath used in the medical world.[25]

Obligation to society

The paramount value recognized by engineers is the safety and welfare of the public. As demonstrated by the following selected excerpts, this is the case for professional engineering organizations in nearly every jurisdiction and engineering discipline:

Responsibility of engineers

The engineers recognize that the greatest merit is the work and exercise their profession committed to serving society, attending to the welfare and progress of the majority. By transforming nature for the benefit of mankind, engineers must increase their awareness of the world as the abode of humanity, their interest in the universe as a guarantee of overcoming their spirit, and knowledge of reality to make the world fairer and happier. The engineer should reject any paper that is intended to harm the general interest, thus avoiding a situation that might be hazardous or threatening to the environment, life, health, or other rights of human beings. It is an inescapable duty of the engineer to uphold the prestige of the profession, to ensure its proper discharge, and to maintain a professional demeanor rooted in ability, honesty, fortitude, temperance, magnanimity, modesty, honesty, and justice; with the consciousness of individual well-being subordinate to the social good. The engineers and their employers must ensure the continuous improvement of their knowledge, particularly of their profession, disseminate their knowledge, share their experience, provide opportunities for education and training of workers, provide recognition, moral and material support to the schools where they studied, thus returning the benefits and opportunities they and their employers have received. It is the responsibility of the engineers to carry out their work efficiently and to support the law. In particular, they must ensure compliance with the standards of worker protection as provided by the law. As professionals, the engineers are expected to commit themselves to high standards of conduct (NSPE). [1] 11/27/11

Duty to Report (Whistleblowing)

The Space Shuttle Challenger disaster is used as a case study of whistleblowing and organizational behavior including groupthink.

Main article: Whistleblower

A basic ethical dilemma is that an engineer has the duty to report to the appropriate authority a possible risk to others from a client or employer failing to follow the engineer's directions. According to first principles, this duty overrides the duty to a client and/or employer.[33] An engineer may be disciplined, or have their license revoked, even if the failure to report such a danger does not result in the loss of life or health.[34]

If an engineer is overruled by a non-technical authority or a technical authority they must inform the authority, in writing, the reasons for their advice and the consequences of the deviation from the advice.[35]

In many cases, this duty can be discharged by advising the client of the consequences in a forthright matter, and ensuring the client takes the engineer's advice. In very rare cases, where even a governmental authority may not take appropriate action, the engineer can only discharge the duty by making the situation public.[36] As a result, whistleblowing by professional engineers is not an unusual event, and courts have often sided with engineers in such cases, overruling duties to employers and confidentiality considerations that otherwise would have prevented the engineer from speaking out.[37]


There are several other ethical issues that engineers may face. Some have to do with technical practice, but many others have to do with broader considerations of business conduct. These include:[22]

Some engineering societies are addressing environmental protection as a stand-alone question of ethics.[23]

The field of business ethics often overlaps and informs ethical decision making for engineers.

Case studies and key individuals

Petroski notes that most engineering failures are much more involved than simple technical mis-calculations and involve the failure of the design process or management culture.[38] However, not all engineering failures involve ethical issues. The infamous collapse of the first Tacoma Narrows Bridge, and the losses of the Mars Polar Lander and Mars Climate Orbiter were technical and design process failures. Nor are all engineering ethics issues necessary engineering failures per se - Northwestern University instructor Sheldon Epstein cited The Holocaust as an example of a breach in engineering ethics despite (and because of) the engineers' creations being successful at carrying out the Nazis' mission of genocide.[39] There is the ethics issue of whether engineers considered vulnerability to hostile intent, such as governmental buildings or industrial sites, in the same way weather is considered regardless of the project specifications.[40] Lysenkoism is a specific form of ethical failure, which when engineers (or scientists) allow political agendas take precedent over professional ethics.

These episodes of engineering failure include ethical as well as technical issues.


  1. ^ Layton (1986). pp. 6-9
  2. ^ The AIEE merged with the Institute of Radio Engineers (IRE) (1912) in 1963 to form the IEEE.
  3. ^ AIME is now the umbrella organization of four technical societies: the Society for Mining, Metallurgy, and Exploration (SME) (1957), The Minerals, Metals & Materials Society (TMS) (1957), the Society of Petroleum Engineers (SPE) (1957), and the Association For Iron and Steel Technology (AIST) (1974). Neither AIME, nor its subsidiary societies have adopted a formal code of ethics.
  4. ^ a b Layton (1986) p. 35.
  5. ^ ASCE (2000). p. 10.
  6. ^ Flavell, Eric. "The ASCE Code of Ethics: PRINCIPLES, STUDY, AND APPLICATION". ASCE. Archived from the original on 2013-12-03. Retrieved Nov 27, 2013.
  7. ^ ASME member H.F.J. Porter had proposed as early as 1892 that the engineering societies adopt uniform membership, education, and licensing requirements as well as a code of ethics. (Layton (1986). pp. 45-46)
  8. ^ Layton (1986). pp. 70 & 114.
  9. ^ Layton (1986). pp. 124-125.
  10. ^ Dietz, Burkhard, ed. (1996). Technische Intelligenz und "Kulturfaktor Technik". Waxmann. p. 29. ISBN 9783893254477.
  11. ^ Lorenz, Werner; Meyer, Torsen (2004). Technik und Verantwortung im Nationalsozialismus. Waxmann Verlag. p. 55. ISBN 9783830964070.
  12. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2015-10-14.((cite web)): CS1 maint: archived copy as title (link)
  13. ^ a b Layton (1986)
  14. ^ [bare URL PDF]
  15. ^ Layton (1986). pp. 6-7
  16. ^ "Board of Ethical Review". National Society of Professional Engineers. 2013. Retrieved Nov 29, 2013.
  17. ^ Transparency International and Social Accountability International (2009). Business Principles for Countering Bribery. Retrieved 2013-11-29.
  18. ^ "Report Details Guidelines to Reduce Corruption in Engineering and Construction Industry" (Press release). ASCE. 2005-06-17. Archived from the original on 2007-09-30. Retrieved 2006-10-20.
  19. ^ a b "NSPE Code of Ethics for Engineers". National Society of Professional Engineers. 2013. Retrieved Nov 29, 2013.
  20. ^ a b PEO. Professional Engineers Ontario Code of Ethics. Section 77.2.i of the Ontario Regulation 941. Retrieved: 2006-10-19.
  21. ^ ICE (2004).
  22. ^ a b ASCE (2000).
  23. ^ a b c d e f g h ASCE [1914] (2006).
  24. ^ "Code of Ethics | ASCE". Retrieved 2018-12-14.
  25. ^
  26. ^ IEEE (2006). Code of Ethics Canon 1.. Retrieved: 2006-10-19.
  27. ^ ICE (2004). p. 38.
  28. ^ "Code of Ethics of Engineers". ASME. 2013. Archived from the original on 2013-12-06. Retrieved Nov 29, 2013.
  29. ^ IIE. "Ethics". [1] Retrieved: 2011-6-01.
  30. ^ AIChE (2003). Code of Ethics Retrieved: 2006-10-21.
  31. ^ ANS (2003). Code of Ethics Retrieved: 2011-08-19.
  32. ^ "Code of Ethics - SFPE". Retrieved 2017-05-18.
  33. ^ Weil, "Whistleblowing: What Have We Learned Since the Challenger?"
  34. ^ See NSPE, Board of Ethical Review, Cases 82-5 Archived 2012-08-08 at the Wayback Machine and 88-6 .
  35. ^ Ontario Regulation 941 Section 72(2)(f)
  36. ^ NSPE (2006-06-30). "Final Report of the NSPE Task Force on Overruling Engineering Judgment to the NSPE Board of Directors" (PDF). Retrieved 2020-08-28. ((cite journal)): Cite journal requires |journal= (help)
  37. ^ See the case of Shawn Carpenter.
  38. ^ Petroski (1985)
  39. ^ "Northwestern U. Fires Adjunct Who Taught About Holocaust". 17 January 1997. Retrieved 2021-06-11.
  40. ^ Kemper, Bart (June 2004). "Evil intent and design responsibility". Science and Engineering Ethics. 10 (2): 303–309. doi:10.1007/s11948-004-0026-4. PMID 15152856. Retrieved 26 March 2024.


Further reading


Ethical Decision Making
Code of Ethics Archived 2012-05-26 at the Wayback Machine


Act, Bylaws and Code of Ethics
EGGP Code of Ethics
Code of Ethics
Code of Ethics (See link on front page.)
Code of Ethics of Engineers
The Ritual of the Calling of an Engineer
Software Ethics - A Guide to the Ethical and Legal Use of Software for Members of the University Community of the University of Western Ontario


Ethical principles of engineering profession Archived 2016-03-04 at the Wayback Machine


Code of Ethics Archived 2019-12-13 at the Wayback Machine

Sri Lanka

Code of Ethics Archived 2019-05-12 at the Wayback Machine


Professional Behavior Principles

United Kingdom

Anti-Corruption Action Statement

Engineering Ethics Toolkit

Ethics Explorer

Royal Charter, By-laws, Regulations and Rules
Professional ethics and the IET
Joint Statement of Ethical Principles Archived 2015-02-05 at the Wayback Machine

United States

Online Ethics Center of the National Academy of Engineering Archived 2018-02-01 at the Wayback Machine
Code of Ethics
Board of Ethical Review and BER Cases
Ethics Resources and References
Code of Ethics
Code of Ethics
Standards of Professional Conduct for Civil Engineers
Code of Ethics
The Obligation of an Engineer
Code of Ethics