This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (May 2024) (Learn how and when to remove this message)

In mathematics, a polynomial sequence has a generalized Appell representation if the generating function for the polynomials takes on a certain form:

where the generating function or kernel is composed of the series

with

and

and all

and

with

Given the above, it is not hard to show that is a polynomial of degree .

Boas–Buck polynomials are a slightly more general class of polynomials.

Special cases

Explicit representation

The generalized Appell polynomials have the explicit representation

The constant is

where this sum extends over all compositions of into parts; that is, the sum extends over all such that

For the Appell polynomials, this becomes the formula

Recursion relation

Equivalently, a necessary and sufficient condition that the kernel can be written as with is that

where and have the power series

and

Substituting

immediately gives the recursion relation

For the special case of the Brenke polynomials, one has and thus all of the , simplifying the recursion relation significantly.

See also

References