The Hayward metric is the simplest description of a black hole which is non-singular. The metric was written down by Sean Hayward as the minimal model which is regular, static, spherically symmetric and asymptotically flat.[1] The metric is not derived from any particular alternative theory of gravity, but provides a framework to test the formation and evaporation of non-singular black holes both within general relativity and beyond. Hayward first published his metric in 2005 and numerous papers have studied it since.[2][3][4][5]

References

  1. ^ Hayward, Sean A. (26 January 2006). "Formation and evaporation of non-singular black holes". Physical Review Letters. 96 (3): 031103. arXiv:gr-qc/0506126. Bibcode:2006PhRvL..96c1103H. doi:10.1103/PhysRevLett.96.031103. PMID 16486679. S2CID 15851759.
  2. ^ De Lorenzo, Tommaso; Pacilio, Costantino; Rovelli, Carlo; Speziale, Simone (1 April 2015). "On the Effective Metric of a Planck Star". General Relativity and Gravitation. 47 (4): 41. arXiv:1412.6015. Bibcode:2015GReGr..47...41D. doi:10.1007/s10714-015-1882-8. S2CID 118431674.
  3. ^ Chiba, Takeshi; Kimura, Masashi (1 April 2017). "A Note on Geodesics in Hayward Metric". Progress of Theoretical and Experimental Physics. 2017 (4). arXiv:1701.04910. doi:10.1093/ptep/ptx037.
  4. ^ Contreras, E.; Bargueño, P. (20 October 2018). "Scale--dependent Hayward black hole and the generalized uncertainty principle". Modern Physics Letters A. 33 (32): 1850184–1850228. arXiv:1809.00785. Bibcode:2018MPLA...3350184C. doi:10.1142/S0217732318501845. S2CID 59946026.
  5. ^ Frolov, Valeri P. (28 November 2016). "Notes on non-singular models of black holes". Physical Review D. 94 (10): 104056. arXiv:1609.01758. Bibcode:2016PhRvD..94j4056F. doi:10.1103/PhysRevD.94.104056. S2CID 119309868.