This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (November 2012) (Learn how and when to remove this template message)

The physicist Sir Isaac Newton first developed this idea to get rough approximations for the impact depth for projectiles traveling at high velocities.

Newton's approximation for the impact depth

Newton's approximation for the impact depth for projectiles at high velocities is based only on momentum considerations. Nothing is said about where the impactor's kinetic energy goes, nor what happens to the momentum after the projectile is stopped.

The basic idea is simple: The impactor carries a given momentum. To stop the impactor, this momentum must be transferred onto another mass. Since the impactor's velocity is so high that cohesion within the target material can be neglected, the momentum can only be transferred to the material (mass) directly in front of the impactor, which will be pushed at the impactor's speed. If the impactor has pushed a mass equal to its own mass at this speed, its whole momentum has been transferred to the mass in front of it and the impactor will be stopped. For a cylindrical impactor, by the time it stops, it will have penetrated to a depth that is equal to its own length times its relative density with respect to the target material.

This approach only holds for a blunt impactor (no aerodynamical shape) and a target material with no fibres (no cohesion), at least not at the impactor's speed. This is usually true if the impactor's speed is much higher than the speed of sound within the target material. At such high velocities, most materials start to behave like a fluid. It is then important that the projectile stay in a compact shape during impact (no spreading).

Applications

See also

Further reading

  • Young, C.W. (1967). The Development of Empirical Equations for Predicting Depth of an Earth Penetrating Projectile (Report). SC-DR-67-60. Albuquerque NM: Sandia National Laboratories.
  • Young, C.W. (1997). Penetration Equations (PDF) (Report). SAND94-2726. Albuquerque NM: Sandia National Laboratories. This is a standalone report documenting the latest updated version of the Young/Sandia penetration equations and related analytical techniques to predict penetration into natural earth materials and concrete. See Appendix A & B for intro to penetration equations.
  • Alekseevskii, V. P. (1966). "Penetration of a Rod into a Target at High Velocity". Combustion, Explosion, and Shock Waves (Fizika Goreniya i Vzryva). 2 (2): 99–106. doi:10.1007/BF00749237. ISSN 0010-5082. S2CID 97258659.
  • Tate, A. (1 November 1967). "A Theory for the Deceleration of Long Rods After Impact" (PDF). Journal of the Mechanics and Physics of Solids. 15 (6): 387–399. Bibcode:1967JMPSo..15..387T. doi:10.1016/0022-5096(67)90010-5. Archived from the original (PDF) on March 26, 2012. Retrieved 23 June 2011.
  • Bernard, Robert S. (1978). Depth and Motion Prediction for Earth Penetrators (PDF) (Report). ADA056701. Vicksburg, MS: Army Engineer Waterways Experiment Station Vicksburg.
  • Walters, William P.; Segletes, Steven B. (1991). "An Exact Solution of the Long Rod Penetration Equations". International Journal of Impact Engineering. 11 (2): 225–231. doi:10.1016/0734-743X(91)90008-4.
  • Segletes, Steven B.; Walters, William P. (2002). Efficient Solution of the Long-Rod Penetration Equations of Alekseevskii-Tate (PDF) (Report). ARL-TR-2855. Aberdeen, MD: Army Research Lab Aberdeen Proving Ground MD.
  • Segletes, Steven B.; Walters, William P. (2003). "Extensions to the Exact Solution of the Long-Rod Penetration/Erosion Equations" (PDF). International Journal of Impact Engineering. 28 (4): 363–376. doi:10.1016/S0734-743X(02)00071-4. Retrieved 23 June 2011.