The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one:
, where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters . Generally the change of representations is simple only when the explicit representation is given: (implicit), (parametric).
For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example.
The implicit function theorem describes conditions under which an equation can be solved (at least implicitly) for x, y or z. But in general the solution may not be made explicit. This theorem is the key to the computation of essential geometric features of a surface: tangent planes, surface normals, curvatures (see below). But they have an essential drawback: their visualization is difficult.
If is polynomial in x, y and z, the surface is called algebraic. Example 5 is non-algebraic.
Despite difficulty of visualization, implicit surfaces provide relatively simple techniques to generate theoretically (e.g. Steiner surface) and practically (see below) interesting surfaces.
Throughout the following considerations the implicit surface is represented by an equation
where function meets the necessary conditions of differentiability. The partial derivatives of
are .
In order to keep the formula simple the arguments are omitted:
is the normal curvature of the surface at a regular point for the unit tangent direction . is the Hessian matrix of (matrix of the second derivatives).
The proof of this formula relies (as in the case of an implicit curve) on the implicit function theorem and the formula for the normal curvature of a parametric surface.
As in the case of implicit curves it is an easy task to generate implicit surfaces with desired shapes by applying algebraic operations (addition, multiplication) on simple primitives.
A Cassini oval can be defined as the point set for which the product of the distances to two given points is constant (in contrast, for an ellipse the sum is constant). In a similar way implicit surfaces can be defined by a constant distance product to several fixed points.
In the diagram metamorphoses the upper left surface is generated by this rule: With
the constant distance product surface is displayed.
-surfaces [1] can be used to approximate any given smooth and bounded object in whose surface is defined by a single polynomial as a product of subsidiary polynomials. In other words, we can design any smooth object with a single algebraic surface. Let us denote the defining polynomials as . Then, the approximating object is defined by the polynomial
There are various algorithms for rendering implicit surfaces,[2] including the marching cubes algorithm.[3] Essentially there are two ideas for visualizing an implicit surface: One generates a net of polygons which is visualized (see surface triangulation) and the second relies on ray tracing which determines intersection points of rays with the surface.[4] The intersection points can be approximated by sphere tracing, using a signed distance function to find the distance to the surface.[5]
^ abAdriano N. Raposo; Abel J.P. Gomes (2019). "Pi-surfaces: products of implicit surfaces towards constructive composition of 3D objects". WSCG 2019 27. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision. arXiv:1906.06751.