This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (March 2022) (Learn how and when to remove this template message)

In mathematics, the **Lefschetz fixed-point theorem** is a formula that counts the fixed points of a continuous mapping from a compact topological space to itself by means of traces of the induced mappings on the homology groups of . It is named after Solomon Lefschetz, who first stated it in 1926.

The counting is subject to an imputed multiplicity at a fixed point called the fixed-point index. A weak version of the theorem is enough to show that a mapping without *any* fixed point must have rather special topological properties (like a rotation of a circle).

For a formal statement of the theorem, let

be a continuous map from a compact triangulable space to itself. Define the **Lefschetz number** of by

the alternating (finite) sum of the matrix traces of the linear maps induced by on , the singular homology groups of with rational coefficients.

A simple version of the Lefschetz fixed-point theorem states: if

then has at least one fixed point, i.e., there exists at least one in such that . In fact, since the Lefschetz number has been defined at the homology level, the conclusion can be extended to say that any map homotopic to has a fixed point as well.

Note however that the converse is not true in general: may be zero even if has fixed points, as is the case for the identity map on odd-dimensional spheres.

First, by applying the simplicial approximation theorem, one shows that if has no fixed points, then (possibly after subdividing ) is homotopic to a fixed-point-free simplicial map (i.e., it sends each simplex to a different simplex). This means that the diagonal values of the matrices of the linear maps induced on the simplicial chain complex of must be all be zero. Then one notes that, in general, the Lefschetz number can also be computed using the alternating sum of the matrix traces of the aforementioned linear maps (this is true for almost exactly the same reason that the Euler characteristic has a definition in terms of homology groups; see below for the relation to the Euler characteristic). In the particular case of a fixed-point-free simplicial map, all of the diagonal values are zero, and thus the traces are all zero.

A stronger form of the theorem, also known as the **Lefschetz–Hopf theorem**, states that, if has only finitely many fixed points, then

where is the set of fixed points of , and denotes the index of the fixed point .^{[1]} From this theorem one deduces the Poincaré–Hopf theorem for vector fields.

The Lefschetz number of the identity map on a finite CW complex can be easily computed by realizing that each can be thought of as an identity matrix, and so each trace term is simply the dimension of the appropriate homology group. Thus the Lefschetz number of the identity map is equal to the alternating sum of the Betti numbers of the space, which in turn is equal to the Euler characteristic . Thus we have

The Lefschetz fixed-point theorem generalizes the Brouwer fixed-point theorem, which states that every continuous map from the -dimensional closed unit disk to must have at least one fixed point.

This can be seen as follows: is compact and triangulable, all its homology groups except are zero, and every continuous map induces the identity map , whose trace is one; all this together implies that is non-zero for any continuous map .

Lefschetz presented his fixed-point theorem in (Lefschetz 1926). Lefschetz's focus was not on fixed points of maps, but rather on what are now called coincidence points of maps.

Given two maps and from an orientable manifold to an orientable manifold of the same dimension, the *Lefschetz coincidence number* of and is defined as

where is as above, is the homomorphism induced by on the cohomology groups with rational coefficients, and and are the Poincaré duality isomorphisms for and , respectively.

Lefschetz proved that if the coincidence number is nonzero, then and have a coincidence point. He noted in his paper that letting and letting be the identity map gives a simpler result, which we now know as the fixed-point theorem.

Let be a variety defined over the finite field with elements and let be the base change of to the algebraic closure of . The **Frobenius endomorphism** of (often the *geometric Frobenius*, or just *the Frobenius*), denoted by , maps a point with coordinates to the point with coordinates . Thus the fixed points of are exactly the points of with coordinates in ; the set of such points is denoted by . The Lefschetz trace formula holds in this context, and reads:

This formula involves the trace of the Frobenius on the étale cohomology, with compact supports, of with values in the field of -adic numbers, where is a prime coprime to .

If is smooth and equidimensional, this formula can be rewritten in terms of the *arithmetic Frobenius* , which acts as the inverse of on cohomology:

This formula involves usual cohomology, rather than cohomology with compact supports.

The Lefschetz trace formula can also be generalized to algebraic stacks over finite fields.