 Plot of the Legendre rational functions for n=0,1,2 and 3 for x between 0.01 and 100.

In mathematics the Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials.

A rational Legendre function of degree n is defined as:

$R_{n}(x)={\frac {\sqrt {2)){x+1))\,P_{n}\left({\frac {x-1}{x+1))\right)$ where $P_{n}(x)$ is a Legendre polynomial. These functions are eigenfunctions of the singular Sturm-Liouville problem:

$(x+1)\partial _{x}(x\partial _{x}((x+1)v(x)))+\lambda v(x)=0$ with eigenvalues

$\lambda _{n}=n(n+1)\,$ ## Properties

Many properties can be derived from the properties of the Legendre polynomials of the first kind. Other properties are unique to the functions themselves.

### Recursion

$R_{n+1}(x)={\frac {2n+1}{n+1))\,{\frac {x-1}{x+1))\,R_{n}(x)-{\frac {n}{n+1))\,R_{n-1}(x)\quad \mathrm {for\,n\geq 1}$ and

$2(2n+1)R_{n}(x)=(x+1)^{2}(\partial _{x}R_{n+1}(x)-\partial _{x}R_{n-1}(x))+(x+1)(R_{n+1}(x)-R_{n-1}(x))$ ### Limiting behavior Plot of the seventh order (n=7) Legendre rational function multiplied by 1+x for x between 0.01 and 100. Note that there are n zeroes arranged symmetrically about x=1 and if x0 is a zero, then 1/x0 is a zero as well. These properties hold for all orders.

It can be shown that

$\lim _{x\rightarrow \infty }(x+1)R_{n}(x)={\sqrt {2))$ and

$\lim _{x\rightarrow \infty }x\partial _{x}((x+1)R_{n}(x))=0$ ### Orthogonality

$\int _{0}^{\infty }R_{m}(x)\,R_{n}(x)\,dx={\frac {2}{2n+1))\delta _{nm)$ where $\delta _{nm)$ is the Kronecker delta function.

## Particular values

$R_{0}(x)=1\,$ $R_{1}(x)={\frac {x-1}{x+1))\,$ $R_{2}(x)={\frac {x^{2}-4x+1}{(x+1)^{2))}\,$ $R_{3}(x)={\frac {x^{3}-9x^{2}+9x-1}{(x+1)^{3))}\,$ $R_{4}(x)={\frac {x^{4}-16x^{3}+36x^{2}-16x+1}{(x+1)^{4))}\,$ Zhong-Qing, Wang; Ben-Yu, Guo (2005). "A mixed spectral method for incompressible viscous fluid flow in an infinite strip". Mat. Apl. Comput. 24 (3). doi:10.1590/S0101-82052005000300002.