Liquid metal embrittlement (also known as LME and liquid metal induced embrittlement) is a phenomenon of practical importance, where certain ductile metals experience drastic loss in tensile ductility or undergo brittle fracture when exposed to specific liquid metals. Generally, a tensile stress, either externally applied or internally present, is needed to induce embrittlement. Exceptions to this rule have been observed, as in the case of aluminium in the presence of liquid gallium.[1] This phenomenon has been studied since the beginning of the 20th century. Many of its phenomenological characteristics are known and several mechanisms have been proposed to explain it.[2][3] The practical significance of liquid metal embrittlement is revealed by the observation that several steels experience ductility losses and cracking during hot-dip galvanizing or during subsequent fabrication.[4] Cracking can occur catastrophically and very high crack growth rates have been measured.[5]

Similar metal embrittlement effects can be observed even in the solid state, when one of the metals is brought close to its melting point; e.g. cadmium-coated parts operating at high temperature. This phenomenon is known as solid metal embrittlement.[6]


Mechanical behavior

Liquid metal embrittlement is characterized by the reduction in the threshold stress intensity, true fracture stress or in the strain to fracture when tested in the presence of liquid metals as compared to that obtained in air / vacuum tests. The reduction in fracture strain is generally temperature dependent and a “ductility trough” is observed as the test temperature is decreased.[2] A ductile-to-brittle transition behaviour is also exhibited by many metal couples. The shape of the elastic region of the stress-strain curve is not altered, but the plastic region may be changed during LME. Very high crack propagation rates, varying from a few centimeters per second to several meters per second are induced in solid metals by the embrittling liquid metals. An incubation period and a slow pre-critical crack propagation stage generally precede final fracture.

Metal chemistry

It is believed that there is specificity in the solid-liquid metals combinations experiencing LME.[7] There should be limited mutual solubilities for the metal couple to cause embrittlement. Excess solubility makes sharp crack propagation difficult, but no solubility condition prevents wetting of the solid surfaces by liquid metal and prevents LME. Presence of an oxide layer on the solid metal surface also prevents good contact between the two metals and stops LME. The chemical compositions of the solid and liquid metals affect the severity of embrittlement. Addition of third elements to the liquid metal may increase or decrease the embrittlement and alters the temperature region over which embrittlement is seen. Metal combinations which form intermetallic compounds do not cause LME. There are a wide variety of LME couples.[3] Most technologically important are the LME of aluminum and steel alloys.


Alloying of the solid metal alters its LME. Some alloying elements may increase the severity while others may prevent LME. The action of the alloying element is known to be segregation to grain boundaries of the solid metal and alteration of the grain boundary properties. Accordingly, maximum LME is seen in cases where alloy additions elements have saturated the grain boundaries of the solid metal.[2] The hardness and deformation behaviour of the solid metal affect its susceptibility to LME. Generally, harder metals are more severely embrittled. Grain size greatly influences LME. Solids with larger grains are more severely embrittled and the fracture stress varies inversely with the square root of grain diameter. Also the brittle to ductile transition temperature is increased by increasing grain size.

Physico-chemical properties

The interfacial energy between the solid and liquid metals and the grain boundary energy of the solid metal greatly influence LME. These energies depend upon the chemical compositions of the metal couple.[2]

Test parameters

External parameters like temperature, strain rate, stress and time of exposure to the liquid metal prior to testing affect LME. Temperature produces a ductility trough and a ductile to brittle transition behaviour in the solid metal. The temperature range of the trough as well as the transition temperature are altered by the composition of the liquid and solid metals, the structure of the solid metal and other experimental parameters. The lower limit of the ductility trough generally coincides with the melting point of the liquid metal. The upper limit is strain rate sensitive. Temperature also affects the kinetics of LME. An increase in strain rate increases the upper limit temperature as well as the crack propagation rate. In most metal couples LME does not occur below a threshold stress level.

Testing typically involves tensile specimens but more sophisticated testing using fracture mechanics specimens is also performed.[8][9][10][11]


Many theories have been proposed for LME.[3] The major ones are listed below;

All of these models, with the exception of Robertson,[2][12] utilize the concept of an adsorption-induced surface energy lowering of the solid metal as the central cause of LME. They have succeeded in predicting many of the phenomenological observations. However, quantitative prediction of LME is still elusive.

Mercury embrittlement

The most common liquid metal to cause embrittlement is mercury. The embrittling effects of mercury were first recognized by Pliny the Elder circa 78 AD.[19] Mercury spills present especially significant danger for airplanes. The aluminium-zinc-magnesium-copper alloy DTD 5050B is especially susceptible. The Al-Cu alloy DTD 5020A is less susceptible. Spilled elemental mercury can be immobilized and made relatively harmless by silver nitrate.[20]

On 1 January 2004, the Moomba, South Australia, natural gas processing plant operated by Santos suffered a major fire. The gas release that led to the fire was caused by the failure of a heat exchanger (cold box) inlet nozzle in the liquids recovery plant. The failure of the inlet nozzle was due to liquid metal embrittlement of the train B aluminium cold box by elemental mercury.[21]

Popular culture

Liquid metal embrittlement plays a central role in the novel Killer Instinct by Joseph Finder.

In the film Big Hero 6, Honey Lemon, voiced by Genesis Rodriguez, uses liquid metal embrittlement in her lab.

See also


  1. ^ Huntington, A. K. (1914). "Discussion on Report to Beilby Prize Committee". Journal of the Institute of Metals. London, UK: Institute of Metals. 11 (1): 108.
  2. ^ a b c d e Joseph, B.; Picat, M. & Barbier, F. (1999). "Liquid metal embrittlement: A state-of-the-art appraisal". European Physical Journal Applied Physics. 5: 19–31. doi:10.1051/epjap:1999108.
  3. ^ a b c Kolman, D. G. (2003). "Environmentally Induced Cracking, Liquid Metal Embrittlement". In Cramer, Stephen D. & Covino, Bernard S., Jr. (eds.). ASM Handbook, Volume 13A, Corrosion: Fundamentals, Testing and Protection. Materials Park, OH: ASM International. pp. 381–392. ISBN 978-0-87170-705-5.((cite book)): CS1 maint: multiple names: editors list (link)
  4. ^ Kamdar, M. H. (1983). "Liquid Metal Embrittlement". Treatise on Materials Science and Technology. Vol. 25. Academic Press. pp. 361–459.
  5. ^ Kolman, D.G. & Chavarria, R. (2002). "Liquid-Metal Embrittlement of 7075 Aluminum and 4340 Steel Compact Tension Specimens by Gallium". Journal of Testing and Evaluation. 30: 452–456. doi:10.1520/JTE12336J.
  6. ^ Kolman, D.G. (2003), pp. 393-397.
  7. ^ Topic Paper SC/T/04/02: Liquid metal assisted cracking of galvanized steel work (Report). Standing Committee on Structural Safety. June 2004.
  8. ^ Kamdar, M. H. (1984). Kamdar, M. H. (ed.). "Embrittlement by Liquid and Solid Metals". Proceedings of the Symposium. Warrendale, PA: Metallurgical Society of AIME: 149.
  9. ^ Benson, B. A. & Hoagland, R. G. (1989). "Crack growth behavior of a high strength aluminum alloy during LME by gallium". Scripta Metallurgica. 23 (11): 1943. doi:10.1016/0036-9748(89)90487-0.
  10. ^ Kargol, J. A. & Albright, D. L. (May 1975). "Fracture mechanics method for determining the crack propagation resistance of embrittled aluminum bicrystals". Journal of Testing and Evaluation. 3 (3): 173.
  11. ^ Kolman, D.G. & Chavarria, R. (March 2004). "Liquid-Metal Embrittlement of Type 316L Stainless Steel by Gallium as Measured by Elastic-Plastic Fracture Mechanics". Corrosion. 60 (3): 254–261. doi:10.5006/1.3287729.
  12. ^ a b Robertson, W. M. (November 1966). "Propagation of a Crack Filled with Liquid Metal". Transactions of the Metallurgical Society of AIME. 236 (11): 1478.
  13. ^ Glikman, E.É. & Goryunov, Yu.V. (July 1978). "Mechanism of embrittlement by liquid metals and other manifestations of the Rebinder effect in metal systems". Soviet Materials Science. 14: 355–364. doi:10.1007/BF01154710.
  14. ^ Stoloff, N. S. & Johnston, T. L. (1963). "Crack propagation in a liquid metal environment". Acta Metallurgica. 11 (4): 251-256. doi:10.1016/0001-6160(63)90180-9.
  15. ^ Westwood, A. R. C. & Kamdar, M. H. (1963). "Concerning liquid metal embrittlement, particularly of zinc monocrystals by mercury". Philosophical Magazine. 8 (89): 787–804. doi:10.1080/14786436308213836.
  16. ^ Gordon, Paul & An, Henry H. (March 1982). "The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals". Metall Mater Trans A. 13 (3): 457–472. doi:10.1007/BF02643354.
  17. ^ Lynch, S. P. (1988). "Environmentally assisted cracking: Overview of evidence for an adsorption-induced localised-slip process". Acta Metallurgica. 36 (10): 2639–2661. doi:10.1016/0001-6160(88)90113-7.
  18. ^ Popovich, V. V. & Dmukhovskaya, I. G. (1987). "The embrittlement of metals and alloys being deformed in contact with low-melting alloys (A review of foreign literature)". Soviet Materials Science. 23: 535–544. doi:10.1007/BF01151882.
  19. ^ C. Plinius Secundus (1964) [78 AD]. Naturalis Historia [The History of the World, or The Natural History] (in Latin). Translated by Philemon Holland. McGraw Hill.
  20. ^ Allsopp, H. J. (31 January 1977). A Chemical Treatment for Mercury Accidentally Spilled in Aircraft (Report). Royal Aircraft Establishment. Archived from the original on 27 September 2007 – via DTIC.
  21. ^ "Moomba Plant Update". Santos (Press release). Adelaide, South Australia. 5 March 2004. Archived from the original on 16 February 2013. Retrieved 18 January 2013. Alt URL: Santos (5 March 2004). "Moomba Plant Update" (Press release). Archived from the original on 24 April 2016. Retrieved 18 January 2013 – via SEC.