Aside from many original inventions, the Chinese were also early original pioneers in the discovery of natural phenomena which can be found in the human body, the environment of the world, and the immediate solar system. They also discovered many concepts in mathematics. The list below contains discoveries which found their origins in China.

Discoveries

Ancient and imperial era

Han Dynasty (202 BC – 220 AD) paintings on tile of Chinese guardian spirits representing 11 pm to 1 am (left) and 5 am to 7 am (right); the ancient Chinese, although discussing it in supernatural terms, acknowledged circadian rhythm within the human body
Han Dynasty (202 BC – 220 AD) paintings on tile of Chinese guardian spirits representing 11 pm to 1 am (left) and 5 am to 7 am (right); the ancient Chinese, although discussing it in supernatural terms, acknowledged circadian rhythm within the human body
Each bronze bell of Marquis Yi of Zeng (433 BC) bears an inscription describing the specific note it plays, its position on a 12-note scale, and how this scale differed from scales used by other Chinese states of the time; before this discovery in 1978, the oldest known surviving Chinese tuning set came from a 3rd-century BC text (which alleges was written by Guan Zhong, d. 645 BC) with five tones and additions or subtractions of ⅓ of successive tone values which produce the rising fourths and falling fifths of Pythagorean tuning.[5]
Each bronze bell of Marquis Yi of Zeng (433 BC) bears an inscription describing the specific note it plays, its position on a 12-note scale, and how this scale differed from scales used by other Chinese states of the time; before this discovery in 1978, the oldest known surviving Chinese tuning set came from a 3rd-century BC text (which alleges was written by Guan Zhong, d. 645 BC) with five tones and additions or subtractions of ⅓ of successive tone values which produce the rising fourths and falling fifths of Pythagorean tuning.[5]
Aware of underground minerals associated with certain plants by at least the 5th century BC, the Chinese extracted trace elements of copper from Oxalis corniculata, pictured here, as written in the 1421 text Precious Secrets of the Realm of the King of Xin.
Aware of underground minerals associated with certain plants by at least the 5th century BC, the Chinese extracted trace elements of copper from Oxalis corniculata, pictured here, as written in the 1421 text Precious Secrets of the Realm of the King of Xin.
Bamboo and rocks by Li Kan (1244–1320); using evidence of fossilized bamboo found in a dry northern climate zone, Shen Kuo hypothesized that climates naturally shifted geographically over time.
Bamboo and rocks by Li Kan (1244–1320); using evidence of fossilized bamboo found in a dry northern climate zone, Shen Kuo hypothesized that climates naturally shifted geographically over time.
Mohandas Karamchand Gandhi tends to a leper; the Chinese were the first to describe the symptoms of leprosy.
Mohandas Karamchand Gandhi tends to a leper; the Chinese were the first to describe the symptoms of leprosy.
Iron plate with an order 6 magic square in Eastern Arabic numerals from China, dating to the Yuan Dynasty (1271-1368).
Iron plate with an order 6 magic square in Eastern Arabic numerals from China, dating to the Yuan Dynasty (1271-1368).
With the description in Han Ying's written work of 135 BC (Han Dynasty), the Chinese were the first to observe that snowflakes had a hexagonal structure.
With the description in Han Ying's written work of 135 BC (Han Dynasty), the Chinese were the first to observe that snowflakes had a hexagonal structure.
Oiled garments left in the tomb of Emperor Zhenzong of Song (r. 997–1022), pictured here in this portrait, caught fire seemingly at random, a case which a 13th-century author related back to the spontaneous combustion described by Zhang Hua (232–300) around 290 AD
Oiled garments left in the tomb of Emperor Zhenzong of Song (r. 997–1022), pictured here in this portrait, caught fire seemingly at random, a case which a 13th-century author related back to the spontaneous combustion described by Zhang Hua (232–300) around 290 AD

Modern era

See also

Notes

  1. ^ Chern later acquired American citizenship in 1961. He was born in Jiaxing, Zhejiang.

References

Citations

  1. ^ a b c d Ho (1991), 516.
  2. ^ Lu, Gwei-Djen (25 October 2002). Celestial Lancets. Psychology Press. pp. 137–140. ISBN 978-0-7007-1458-2.
  3. ^ a b Needham (1986), Volume 3, 89.
  4. ^ Medvei (1993), 49.
  5. ^ McClain and Ming (1979), 206.
  6. ^ McClain and Ming (1979), 207–208.
  7. ^ McClain and Ming (1979), 212.
  8. ^ Needham (1986), Volume 4, Part 1, 218–219.
  9. ^ Kuttner (1975), 166–168.
  10. ^ Needham (1986), Volume 4, Part 1, 227–228.
  11. ^ a b Needham (1986), Volume 4, Part 1, 223.
  12. ^ Needham (1986), Volume 3, 24–25, 121.
  13. ^ Shen, Crossley, and Lun (1999), 388.
  14. ^ Straffin (1998), 166.
  15. ^ Chan, Clancey, Loy (2002), 15.
  16. ^ Needham (1986), Volume 3, 614.
  17. ^ Sivin (1995), III, 23.
  18. ^ Needham (1986), Volume 3, 603–604, 618.
  19. ^ Kangsheng Shen, John Crossley, Anthony W.-C. Lun (1999): "Nine Chapters of Mathematical Art", Oxford University Press, pp.33-37
  20. ^ Thorpe, I. J.; James, Peter J.; Thorpe, Nick (1996). Ancient Inventions. Michael O'Mara Books Ltd (published March 8, 1996). p. 64. ISBN 978-1854796080.
  21. ^ Needham, Volume 3, 106–107.
  22. ^ Needham, Volume 3, 538–540.
  23. ^ Nelson, 359.
  24. ^ Shen, pp.27, 36-37
  25. ^ Wu Wenjun chief ed, The Grand Series of History of Chinese Mathematics Vol 5 Part 2, chapter 1, Jia Xian
  26. ^ a b c McLeod & Yates (1981), 152–153 & footnote 147.
  27. ^ Aufderheide et al., (1998), 148.
  28. ^ Salomon (1998), 12–13.
  29. ^ Martzloff, Jean-Claude (1997). "Li Shanlan's Summation Formulae". A History of Chinese Mathematics. pp. 341–351. doi:10.1007/978-3-540-33783-6_18. ISBN 978-3-540-33782-9.
  30. ^ C. J. Colbourn; Jeffrey H. Dinitz (2 November 2006). Handbook of Combinatorial Designs. CRC Press. pp. 525. ISBN 978-1-58488-506-1.
  31. ^ a b Selin, Helaine (2008). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer (published March 17, 2008). p. 567. ISBN 978-1402049606.
  32. ^ Needham (1986), Volume 3, 91.
  33. ^ Needham (1986), Volume 3, 90-91.
  34. ^ Teresi (2002), 65–66.
  35. ^ a b Needham (1986), Volume 3, 90.
  36. ^ Neehdam (1986), Volume 3, 99–100.
  37. ^ a b Berggren, Borwein & Borwein (2004), 27
  38. ^ Arndt and Haenel (2001), 177
  39. ^ Wilson (2001), 16.
  40. ^ Needham (1986), Volume 3, 100–101.
  41. ^ Berggren, Borwein & Borwein (2004), 24–26.
  42. ^ Berggren, Borwein & Borwein (2004), 26.
  43. ^ Berggren, Borwein & Borwein (2004), 20.
  44. ^ Gupta (1975), B45–B48
  45. ^ Berggren, Borwein, & Borwein (2004), 24.
  46. ^ Sivin (1995), III, 17–18.
  47. ^ Sivin (1995), III, 22.
  48. ^ Needham (1986), Volume 3, 278.
  49. ^ Sivin (1995), III, 21–22.
  50. ^ Elisseeff (2000), 296.
  51. ^ Hsu (1988), 102.
  52. ^ Croft, S.L. (1997). "The current status of antiparasite chemotherapy". In G.H. Coombs; S.L. Croft; L.H. Chappell (eds.). Molecular Basis of Drug Design and Resistance. Cambridge: Cambridge University Press. pp. 5007–5008. ISBN 978-0-521-62669-9.
  53. ^ O'Connor, Anahad (12 September 2011). "Lasker Honors for a Lifesaver". The New York Times.
  54. ^ Tu, Youyou (11 October 2011). "The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine". Nature Medicine.
  55. ^ McKenna, Phil (15 November 2011). "The modest woman who beat malaria for China". New Scientist.
  56. ^ Chen, J.R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao. 17: 385–386.
  57. ^ Chen, J.R. (1973). "On the representation of a larger even integer as the sum of a prime and the product of at most two primes". Sci. Sinica. 16: 157–176.
  58. ^ Chen, J. R. (1966). "On the representation of a large even integer as the sum of a prime and the product of at most two primes". Kexue Tongbao 17: 385–386.
  59. ^ Cheng, Shiu Yuen (1975a). "Eigenfunctions and eigenvalues of Laplacian". Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2. Providence, R.I.: American Mathematical Society. pp. 185–193. MR 0378003.
  60. ^ Chavel, Isaac (1984). "Eigenvalues in Riemannian geometry". Pure Appl. Math. 115. Academic Press. Cite journal requires |journal= (help)
  61. ^ Chern, S. S. (1946). "Characteristic classes of Hermitian Manifolds". Annals of Mathematics. Second Series. The Annals of Mathematics, Vol. 47, No. 1. 47 (1): 85–121. doi:10.2307/1969037. ISSN 0003-486X. JSTOR 1969037.
  62. ^ S Darougar, B R Jones, J R Kimptin, J D Vaughan-Jackson, and E M Dunlop. Chlamydial infection. Advances in the diagnostic isolation of Chlamydia, including TRIC agent, from the eye, genital tract, and rectum. Br J Vener Dis. 1972 December; 48(6): 416–420; TANG FF, HUANG YT, CHANG HL, WONG KC. Further studies on the isolation of the trachoma virus. Acta Virol. 1958 Jul-Sep;2(3):164-70; TANG FF, CHANG HL, HUANG YT, WANG KC. Studies on the etiology of trachoma with special reference to isolation of the virus in chick embryo. Chin Med J. 1957 Jun;75(6):429-47; TANG FF, HUANG YT, CHANG HL, WONG KC. Isolation of trachoma virus in chick embryo. J Hyg Epidemiol Microbiol Immunol. 1957;1(2):109-20
  63. ^ Ji Qiang; Ji Shu-an (1996). "On the discovery of the earliest bird fossil in China and the origin of birds" (PDF). Chinese Geology. 233: 30–33.
  64. ^ Browne, M.W. (19 October 1996). "Feathery Fossil Hints Dinosaur-Bird Link". New York Times. p. Section 1 page 1 of the New York edition.
  65. ^ Chen Pei-ji, Pei-ji; Dong Zhiming; Zhen Shuo-nan (1998). "An exceptionally preserved theropod dinosaur from the Yixian Formation of China". Nature. 391 (6663): 147–152. Bibcode:1998Natur.391..147C. doi:10.1038/34356. S2CID 4430927.
  66. ^ Sanderson, K. (23 May 2007). "Bald dino casts doubt on feather theory". News@nature. doi:10.1038/news070521-6. S2CID 189975591. Retrieved 14 January 2011.
  67. ^ Cohn 2003, §9.1
  68. ^ Hua Loo-keng (1938). "On Waring's problem". Quarterly Journal of Mathematics. 9 (1): 199–202. Bibcode:1938QJMat...9..199H. doi:10.1093/qmath/os-9.1.199.
  69. ^ Sant S. Virmani, C. X. Mao, B. Hardy, (2003). Hybrid Rice for Food Security, Poverty Alleviation, and Environmental Protection. International Rice Research Institute. ISBN 971-22-0188-0, p. 248
  70. ^ Wolf Foundation Agricultural Prizes
  71. ^ Huang-Minlon (1946). "A Simple Modification of the Wolff-Kishner Reduction". Journal of the American Chemical Society. 68 (12): 2487–2488. doi:10.1021/ja01216a013.
  72. ^ Huang-Minlon (1949). "Reduction of Steroid Ketones and other Carbonyl Compounds by Modified Wolff--Kishner Method". Journal of the American Chemical Society. 71 (10): 3301–3303. doi:10.1021/ja01178a008.
  73. ^ Organic Syntheses, Coll. Vol. 4, p. 510 (1963); Vol. 38, p. 34 (1958). (Article)
  74. ^ Tsen, C. (1936). "Zur Stufentheorie der Quasi-algebraisch-Abgeschlossenheit kommutativer Körper". J. Chinese Math. Soc. 171: 81–92. Zbl 0015.38803.
  75. ^ Wu, Wen-Tsun (1978). "On the decision problem and the mechanization of theorem proving in elementary geometry". Scientia Sinica. 21.
  76. ^ P. Aubry, D. Lazard, M. Moreno Maza (1999). On the theories of triangular sets. Journal of Symbolic Computation, 28(1–2):105–124
  77. ^ Exum, Roy (December 27, 2015). "Roy Exum: Ellen Does It Again". The Chattanoogan.

Sources

  • Arndt, Jörg, and Christoph Haenel. (2001). Pi Unleashed. Translated by Catriona and David Lischka. Berlin: Springer. ISBN 3-540-66572-2.
  • Aufderheide, A. C.; Rodriguez-Martin, C. & Langsjoen, O. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press. ISBN 0-521-55203-6.
  • Berggren, Lennart, Jonathan M. Borwein, and Peter B. Borwein. (2004). Pi: A Source Book. New York: Springer. ISBN 0-387-20571-3.
  • Chan, Alan Kam-leung and Gregory K. Clancey, Hui-Chieh Loy (2002). Historical Perspectives on East Asian Science, Technology and Medicine. Singapore: Singapore University Press. ISBN 9971-69-259-7
  • Elisseeff, Vadime. (2000). The Silk Roads: Highways of Culture and Commerce. New York: Berghahn Books. ISBN 1-57181-222-9.
  • Gupta, R C. "Madhava's and other medieval Indian values of pi," in Math, Education, 1975, Vol. 9 (3): B45–B48.
  • Ho, Peng Yoke. "Chinese Science: The Traditional Chinese View," Bulletin of the School of Oriental and African Studies, University of London, Vol. 54, No. 3 (1991): 506–519.
  • Hsu, Mei-ling (1988). "Chinese Marine Cartography: Sea Charts of Pre-Modern China". Imago Mundi. 40: 96–112. doi:10.1080/03085698808592642.
  • McLeod, Katrina C. D.; Yates, Robin D. S. (1981). "Forms of Ch'in Law: An Annotated Translation of The Feng-chen shih". Harvard Journal of Asiatic Studies. 41 (1): 111–163. doi:10.2307/2719003. JSTOR 2719003.
  • McClain, Ernest G.; Shui Hung, Ming (1979). "Chinese Cyclic Tunings in Late Antiquity". Ethnomusicology. 23 (2): 205–224. doi:10.2307/851462. JSTOR 851462.
  • Medvei, Victor Cornelius. (1993). The History of Clinical Endocrinology: A Comprehensive Account of Endocrinology from Earliest Times to the Present Day. New York: Pantheon Publishing Group Inc. ISBN 1-85070-427-9.
  • Needham, Joseph. (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Taipei: Caves Books, Ltd.
  • Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology; Part 1, Physics. Taipei: Caves Books Ltd.
  • Salomon, Richard (1998), Indian Epigraphy: A Guide to the Study of Inscriptions in Sanskrit, Prakrit, and the Other Indo-Aryan Languages. Oxford: Oxford University Press. ISBN 0-19-509984-2.
  • Sivin, Nathan (1995). Science in Ancient China: Researches and Reflections. Brookfield, Vermont: VARIORUM, Ashgate Publishing.
  • Straffin Jr, Philip D. (1998). "Liu Hui and the First Golden Age of Chinese Mathematics". Mathematics Magazine. 71 (3): 163–181. doi:10.1080/0025570X.1998.11996627.
  • Teresi, Dick. (2002). Lost Discoveries: The Ancient Roots of Modern Science–from the Babylonians to the Mayas. New York: Simon and Schuster. ISBN 0-684-83718-8.
  • Wilson, Robin J. (2001). Stamping Through Mathematics. New York: Springer-Verlag New York, Inc.