Some of this article's listed sources may not be reliable. Please help improve this article by looking for better, more reliable sources. Unreliable citations may be challenged and removed. (December 2021) (Learn how and when to remove this message)

In linear algebra, the main diagonal (sometimes principal diagonal, primary diagonal, leading diagonal, major diagonal, or good diagonal) of a matrix ${\displaystyle A}$ is the list of entries ${\displaystyle a_{i,j))$ where ${\displaystyle i=j}$. All off-diagonal elements are zero in a diagonal matrix. The following four matrices have their main diagonals indicated by red ones:

${\displaystyle {\begin{bmatrix}\color {red}{1}&0&0\\0&\color {red}{1}&0\\0&0&\color {red}{1}\end{bmatrix))\qquad {\begin{bmatrix}\color {red}{1}&0&0&0\\0&\color {red}{1}&0&0\\0&0&\color {red}{1}&0\end{bmatrix))\qquad {\begin{bmatrix}\color {red}{1}&0&0\\0&\color {red}{1}&0\\0&0&\color {red}{1}\\0&0&0\end{bmatrix))\qquad {\begin{bmatrix}\color {red}{1}&0&0&0\\0&\color {red}{1}&0&0\\0&0&\color {red}{1}&0\\0&0&0&\color {red}{1}\end{bmatrix))\qquad }$

## Antidiagonal

 See also: Anti-diagonal matrix

The antidiagonal (sometimes counter diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal, or bad diagonal) of an order ${\displaystyle N}$ square matrix ${\displaystyle B}$ is the collection of entries ${\displaystyle b_{i,j))$ such that ${\displaystyle i+j=N-1}$ for all ${\displaystyle 1\leq i,j\leq N}$. That is, it runs from the top right corner to the bottom left corner.

${\displaystyle {\begin{bmatrix}0&0&\color {red}{1}\\0&\color {red}{1}&0\\\color {red}{1}&0&0\end{bmatrix))}$

## References

• Weisstein, Eric W. "Main diagonal". MathWorld.