A network solid or covalent network solid (also called atomic crystalline solids or giant covalent structures)[1][2] is a chemical compound (or element) in which the atoms are bonded by covalent bonds in a continuous network extending throughout the material. In a network solid there are no individual molecules, and the entire crystal or amorphous solid may be considered a macromolecule. Formulas for network solids, like those for ionic compounds, are simple ratios of the component atoms represented by a formula unit.[3]

Examples of network solids include diamond with a continuous network of carbon atoms and silicon dioxide or quartz with a continuous three-dimensional network of SiO2 units. Graphite and the mica group of silicate minerals structurally consist of continuous two-dimensional sheets covalently bonded within the layer, with other bond types holding the layers together.[3] Disordered network solids are termed glasses. These are typically formed on rapid cooling of melts so that little time is left for atomic ordering to occur.[4]

Properties

Examples

See also

References

  1. ^ "Properties of solids". www.chem.fsu.edu. Retrieved 2021-02-08.
  2. ^ "12.7: Types of Crystalline Solids- Molecular, Ionic, and Atomic". Libretexts. 2018-05-20. Retrieved 2021-02-08.
  3. ^ a b Steven S. Zumdahl; Susan A. Zumdahl (2000), Chemistry (5 ed.), Houghton Mifflin, pp. 470–6, ISBN 0-618-03591-5
  4. ^ Zarzycki, J. Glasses and the vitreous state, Cambridge University Press, New York, 1982.
  5. ^ Ebbing, Darrell D., and R.A.D. Wentworth. Introductory Chemistry. 2nd ed. Boston: Houghton Mifflin, 1998. Print.
  6. ^ Brown, Theodore L.; LeMay, H. Eugene Jr.; Bursten, Bruce E.; Murphy, Catherine J. (2009). Chemistry: The Central Science (11th ed.). Upper Saddle River, NJ: Prentice Hall. pp. 466–7. ISBN 978-0-13-600617-6.