Oleg Dmitrovich Jefimenko (October 14, 1922, Kharkiv, Ukrainian SSR – May 14, 2009, Morgantown, West Virginia, United States) was a physicist and professor emeritus at West Virginia University.


Jefimenko received his B.A. degree at Lewis and Clark College in 1952 and his M.A. degree at the University of Oregon in 1954. He received his Ph.D. degree at the University of Oregon in 1956. Jefimenko worked for the development of the theory of electromagnetic retardation and relativity. In 1956, he was awarded the Sigma Xi Prize. In 1971 and 1973, he won awards in the AAPT Apparatus Competition. Jefimenko constructed and operated electrostatic generators run by atmospheric electricity.

Jefimenko worked on the generalization of Newton's gravitational theory to time-dependent systems. In his opinion, there is no objective reason for abandoning Newton's force-field gravitational theory (in favor of a metric gravitational theory). He was trying to develop and expand Newton's theory, making it compatible with the principle of causality and making it applicable to time-dependent gravitational interactions.

Jefimenko's expansion, or generalization, is based on the existence of the second gravitational force field, the "cogravitational, or Heaviside's field".[1] This might also be called a gravimagnetic field. It represents a physical approach profoundly different from the time-space geometry approach of the Einstein general theory of relativity. Oliver Heaviside first predicted this field in the article A Gravitational and Electromagnetic Analogy (1893).

Electromagnetic analogy of gravitational and cogravitational fields

Jefimenko suggests that electromagnetic equations can be converted to their gravitational-cogravitational equivalent by replacing electromagnetic symbols and constants with their corresponding gravitational-cogravitational symbols and constants,[2] given in the table below.

Corresponding symbols and constants
Electric Gravitational
q (charge) m (mass)
ρ (volume charge density) ρ (volume mass density)
σ (surface charge density) σ (surface mass density)
λ (line charge density) λ (line mass density)
φ (scalar potential) φ (scalar potential)
A (vector potential) A (vector potential)
J (convection current density) J (mass-current density)
I (electric current) I (mass current)
m (magnetic dipole moment) d (cogravitational moment)
E (electric field) g (gravitational field)
B (magnetic field) K (cogravitational field)
ε0 (permittivity of space)
μ0 (permeability of space)
or G (gravitational constant)

Generalized theory of gravitation

This section may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (November 2020) (Learn how and when to remove this template message)

Jefimenko posits the following generalized theory of gravitation.[3]

Selected publications


See also


  1. ^ de Climont, Jean (2018). The Worldwide List of Alternative Theories and Critics. p. 1047. ISBN 9782902425174.
  2. ^ Jefimenko (2006a), pp. 129.
  3. ^ Jefimenko (2006), pp. 13.