Involutional symmetry Cs, (*) [ ] = |
Cyclic symmetry Cnv, (*nn) [n] = |
Dihedral symmetry Dnh, (*n22) [n,2] = | |
Polyhedral group, [n,3], (*n32) | |||
---|---|---|---|
Tetrahedral symmetry Td, (*332) [3,3] = |
Octahedral symmetry Oh, (*432) [4,3] = |
Icosahedral symmetry Ih, (*532) [5,3] = |
In geometry, the polyhedral group is any of the symmetry groups of the Platonic solids.
There are three polyhedral groups:
These symmetries double to 24, 48, 120 respectively for the full reflectional groups. The reflection symmetries have 6, 9, and 15 mirrors respectively. The octahedral symmetry, [4,3] can be seen as the union of 6 tetrahedral symmetry [3,3] mirrors, and 3 mirrors of dihedral symmetry Dih2, [2,2]. Pyritohedral symmetry is another doubling of tetrahedral symmetry.
The conjugacy classes of full tetrahedral symmetry, Td ≅ S4, are:
The conjugacy classes of pyritohedral symmetry, Th, include those of T, with the two classes of 4 combined, and each with inversion:
The conjugacy classes of the full octahedral group, Oh ≅ S4 × C2, are:
The conjugacy classes of full icosahedral symmetry, Ih ≅ A5 × C2, include also each with inversion:
Name (Orb.) |
Coxeter notation |
Order | Abstract structure |
Rotation points #valence |
Diagrams | |||
---|---|---|---|---|---|---|---|---|
Orthogonal | Stereographic | |||||||
T (332) |
[3,3]+ |
12 | A4 | 43 32 |
||||
Th (3*2) |
[4,3+] |
24 | A4 × C2 | 43 3*2 |
||||
O (432) |
[4,3]+ |
24 | S4 | 34 43 62 |
||||
I (532) |
[5,3]+ |
60 | A5 | 65 103 152 |
Weyl Schoe. (Orb.) |
Coxeter notation |
Order | Abstract structure |
Coxeter number (h) |
Mirrors (m) |
Mirror diagrams | |||
---|---|---|---|---|---|---|---|---|---|
Orthogonal | Stereographic | ||||||||
A3 Td (*332) |
[3,3] |
24 | S4 | 4 | 6 | ||||
B3 Oh (*432) |
[4,3] |
48 | S4 × C2 | 8 | 3 >6 |
||||
H3 Ih (*532) |
[5,3] |
120 | A5 × C2 | 10 | 15 |