Portal topics
Activities
Culture
Geography
Health
History
Mathematics
Nature
People
Philosophy
Religion
Society
Technology
Random portal

The Animals Portal

Animal diversity.png

Animals (also called Metazoa) are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in which their body consists of a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Most living animal species are in Bilateria, a clade whose members have a bilaterally symmetric body plan. The Bilateria include the protostomes, containing animals such as nematodes, arthropods, flatworms, annelids and molluscs, and the deuterostomes, containing the echinoderms and the chordates, the latter including the vertebrates. Life forms interpreted as early animals were present in the Ediacaran biota of the late Precambrian. Many modern animal phyla became clearly established in the fossil record as marine species during the Cambrian explosion, which began around 539 million years ago. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago.

Historically, Aristotle divided animals into those with blood and those without. Carl Linnaeus created the first hierarchical biological classification for animals in 1758 with his Systema Naturae, which Jean-Baptiste Lamarck expanded into 14 phyla by 1809. In 1874, Ernst Haeckel divided the animal kingdom into the multicellular Metazoa (now synonymous for Animalia) and the Protozoa, single-celled organisms no longer considered animals. In modern times, the biological classification of animals relies on advanced techniques, such as molecular phylogenetics, which are effective at demonstrating the evolutionary relationships between taxa. (Full article...)

Zoology (/zˈɒləi/) is the branch of biology that studies the animal kingdom, including the structure, embryology, evolution, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos ('knowledge', 'study'). (Full article...)

Symbol support vote.svg
Selected animal - show another
Cscr-featured.png

Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.

Red sea fingers (Alcyonium glomeratum), a soft coral
Red sea fingers (Alcyonium glomeratum), a soft coral

Corals are marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

A coral "group" is a colony of very many genetically identical polyps. Each polyp is a sac-like animal typically only a few millimeters in diameter and a few centimeters in height. A set of tentacles surround a central mouth opening. Each polyp excretes an exoskeleton near the base. Over many generations, the colony thus creates a skeleton characteristic of the species which can measure up to several meters in size. Individual colonies grow by asexual reproduction of polyps. Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously overnight, often around a full moon. Fertilized eggs form planulae, a mobile early form of the coral polyp which, when mature, settles to form a new colony. (Full article...)

Selected pictures

Symbol support vote.svg
Selected article - show another
Cscr-featured.png

Entries here consist of Good and Featured articles, which meet a core set of high editorial standards.

Cover of first edition
Cover of first edition

The Colours of Animals is a zoology book written in 1890 by Sir Edward Bagnall Poulton (1856–1943). It was the first substantial textbook to argue the case for Darwinian selection applying to all aspects of animal coloration. The book also pioneered the concept of frequency-dependent selection and introduced the term "aposematism".

The book begins with a brief account of the physical causes of animal coloration. The second chapter gives an overview of the book, describing the various uses of colour in terms of the advantages it can bring through natural selection. The next seven chapters describe camouflage, both in predators and in prey. Methods of camouflage covered include background matching, resemblance to specific objects such as bird droppings, self-decoration with materials from the environment, and the seasonal colour change of arctic animals. Two chapters cover warning colours, including both Batesian mimicry, where the mimic is edible, and Mullerian mimicry, where distasteful species mimic each other. A chapter then looks at how animals combine multiple methods of defence, for instance in the puss moth. Two chapters examine coloration related to sexual selection. Finally Poulton summarizes the subject with a fold-out table including a set of Greek derived words that he invented, of which "aposematic" and "cryptic" survive in biological usage. (Full article...)
List of selected articles


Bottlenose dolphins breaching

  • ... that super weaners may be "milk thieves" or "double mother-sucklers"?


General pictures

The following are images from various animal-related articles on Wikipedia.

Related portals

Topics


The following table lists estimated numbers of described extant species for the animal groups with the largest numbers of species,[1] along with their principal habitats (terrestrial, fresh water,[2] and marine),[3] and free-living or parasitic ways of life.[4] Species estimates shown here are based on numbers described scientifically; much larger estimates have been calculated based on various means of prediction, and these can vary wildly. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million.[5] Using patterns within the taxonomic hierarchy, the total number of animal species—including those not yet described—was calculated to be about 7.77 million in 2011.[6][7][a]

Phylum Example No. of
Species
Land Sea Fresh
water
Free-
living
Parasitic
Annelids
Nerr0328.jpg
17,000[1] Yes (soil)[3] Yes[3] 1,750[2] Yes 400[4]
Arthropods
wasp
1,257,000[1] 1,000,000
(insects)[9]
>40,000
(Malac-
ostraca)[10]
94,000[2] Yes[3] >45,000[b][4]
Bryozoa
Bryozoan at Ponta do Ouro, Mozambique (6654415783).jpg
6,000[1] Yes[3] 60–80[2] Yes
Chordates
green spotted frog facing right
65,000[1]
45,000[11]

23,000[11]

13,000[11]
18,000[2]
9,000[11]
Yes 40
(catfish)[12][4]
Cnidaria
Table coral
16,000[1] Yes[3] Yes (few)[3] Yes[3] >1,350
(Myxozoa)[4]
Echinoderms
Starfish, Caswell Bay - geograph.org.uk - 409413.jpg
7,500[1] 7,500[1] Yes[3]
Molluscs
snail
85,000[1]
107,000[13]

35,000[13]

60,000[13]
5,000[2]
12,000[13]
Yes[3] >5,600[4]
Nematodes
CelegansGoldsteinLabUNC.jpg
25,000[1] Yes (soil)[3] 4,000[5] 2,000[2] 11,000[5] 14,000[5]
Platyhelminthes
Pseudoceros dimidiatus.jpg
29,500[1] Yes[14] Yes[3] 1,300[2] Yes[3]

3,000–6,500[15]

>40,000[4]

4,000–25,000[15]

Rotifers
20090730 020239 Rotifer.jpg
2,000[1] >400[16] 2,000[2] Yes
Sponges
A colourful Sponge on the Fathom.jpg
10,800[1] Yes[3] 200-300[2] Yes Yes[17]
Total number of described extant species as of 2013: 1,525,728[1]

Categories

Category puzzle
Select [►] to view subcategories

WikiProjects

WikiProject family tree

WikiProjects
More projects
  • Molluscs:
  • Vertebrates:
  • (Other)

Things you can do


Here are some Open Tasks :


Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

References

  1. ^ The application of DNA barcoding to taxonomy further complicates this; a 2016 barcoding analysis estimated a total count of nearly 100,000 insect species for Canada alone, and extrapolated that the global insect fauna must be in excess of 10 million species, of which nearly 2 million are in a single fly family known as gall midges (Cecidomyiidae).[8]
  2. ^ Not including parasitoids.[4]
  1. ^ a b c d e f g h i j k l m n Zhang, Zhi-Qiang (2013-08-30). "Animal biodiversity: An update of classification and diversity in 2013. In: Zhang, Z.-Q. (Ed.) Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013)". Zootaxa. 3703 (1): 5. doi:10.11646/zootaxa.3703.1.3. Archived from the original on 24 April 2019. Retrieved 2 March 2018.
  2. ^ a b c d e f g h i j Balian, E. V.; Lévêque, C.; Segers, H.; Martens, K. (2008). Freshwater Animal Diversity Assessment. Springer. p. 628. ISBN 978-1-4020-8259-7.
  3. ^ a b c d e f g h i j k l m n Hogenboom, Melissa. "There are only 35 kinds of animal and most are really weird". BBC Earth. Archived from the original on 10 August 2018. Retrieved 2 March 2018.
  4. ^ a b c d e f g h Poulin, Robert (2007). Evolutionary Ecology of Parasites. Princeton University Press. p. 6. ISBN 978-0-691-12085-0.
  5. ^ a b c d Felder, Darryl L.; Camp, David K. (2009). Gulf of Mexico Origin, Waters, and Biota: Biodiversity. Texas A&M University Press. p. 1111. ISBN 978-1-60344-269-5.
  6. ^ "How many species on Earth? About 8.7 million, new estimate says". 24 August 2011. Archived from the original on 1 July 2018. Retrieved 2 March 2018.
  7. ^ Mora, Camilo; Tittensor, Derek P.; Adl, Sina; Simpson, Alastair G.B.; Worm, Boris (2011-08-23). Mace, Georgina M. (ed.). "How Many Species Are There on Earth and in the Ocean?". PLOS Biology. 9 (8): e1001127. doi:10.1371/journal.pbio.1001127. PMC 3160336. PMID 21886479.
  8. ^ Hebert, Paul D.N.; Ratnasingham, Sujeevan; Zakharov, Evgeny V.; Telfer, Angela C.; Levesque-Beaudin, Valerie; Milton, Megan A.; Pedersen, Stephanie; Jannetta, Paul; deWaard, Jeremy R. (1 August 2016). "Counting animal species with DNA barcodes: Canadian insects". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1702): 20150333. doi:10.1098/rstb.2015.0333. PMC 4971185. PMID 27481785.
  9. ^ Stork, Nigel E. (January 2018). "How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?". Annual Review of Entomology. 63 (1): 31–45. doi:10.1146/annurev-ento-020117-043348. PMID 28938083. S2CID 23755007. Stork notes that 1m insects have been named, making much larger predicted estimates.
  10. ^ Poore, Hugh F. (2002). "Introduction". Crustacea: Malacostraca. Zoological catalogue of Australia. Vol. 19.2A. CSIRO Publishing. pp. 1–7. ISBN 978-0-643-06901-5.
  11. ^ a b c d Reaka-Kudla, Marjorie L.; Wilson, Don E.; Wilson, Edward O. (1996). Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press. p. 90. ISBN 978-0-309-52075-1.
  12. ^ Burton, Derek; Burton, Margaret (2017). Essential Fish Biology: Diversity, Structure and Function. Oxford University Press. pp. 281–282. ISBN 978-0-19-878555-2. Trichomycteridae ... includes obligate parasitic fish. Thus 17 genera from 2 subfamilies, Vandelliinae; 4 genera, 9spp. and Stegophilinae; 13 genera, 31 spp. are parasites on gills (Vandelliinae) or skin (stegophilines) of fish.
  13. ^ a b c d Nicol, David (June 1969). "The Number of Living Species of Molluscs". Systematic Zoology. 18 (2): 251–254. doi:10.2307/2412618. JSTOR 2412618.
  14. ^ Sluys, R. (1999). "Global diversity of land planarians (Platyhelminthes, Tricladida, Terricola): a new indicator-taxon in biodiversity and conservation studies". Biodiversity and Conservation. 8 (12): 1663–1681. doi:10.1023/A:1008994925673. S2CID 38784755.
  15. ^ a b Pandian, T. J. (2020). Reproduction and Development in Platyhelminthes. CRC Press. pp. 13–14. ISBN 9781000054903.
  16. ^ Fontaneto, Diego. "Marine Rotifers | An Unexplored World of Richness" (PDF). JMBA Global Marine Environment. pp. 4–5. Archived (PDF) from the original on 2 March 2018. Retrieved 2 March 2018.
  17. ^ Morand, Serge; Krasnov, Boris R.; Littlewood, D. Timothy J. (2015). Parasite Diversity and Diversification. Cambridge University Press. p. 44. ISBN 978-1-107-03765-6. Archived from the original on 12 December 2018. Retrieved 2 March 2018.