In mathematics, primitive recursive set functions or primitive recursive ordinal functions are analogs of primitive recursive functions, defined for sets or ordinals rather than natural numbers. They were introduced by Jensen & Karp (1971).

Definition

A primitive recursive set function is a function from sets to sets that can be obtained from the following basic functions by repeatedly applying the following rules of substitution and recursion:

The basic functions are:

The rules for generating new functions by substitution are

where x and y are finite sequences of variables.

The rule for generating new functions by recursion is

A primitive recursive ordinal function is defined in the same way, except that the initial function F(x, y) = x ∪ {y} is replaced by F(x) = x ∪ {x} (the successor of x). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.

Examples of primitive recursive set functions:

Extensions

One can also add more initial functions to obtain a larger class of functions. For example, the ordinal function is not primitive recursive, because the constant function with value ω (or any other infinite set) is not primitive recursive, so one might want to add this constant function to the initial functions.

The notion of a set function being primitive recursive in ω has the same definition as that of primitive recursion, except with ω as a parameter kept fixed, not altered by the primitive recursion schemata.

Examples of functions primitive recursive in ω:[1] pp.28--29

Primitive recursive closure

Let be the function , and for all , and . Let Lα denote the αth stage of Godel's constructible universe. Lα is closed under primitive recursive set functions iff α is closed under each for all . [1]: 31 

References

Inline