In quantum mechanics, a quantum speed limit (QSL) is a limitation on the minimum time for a quantum system to evolve between two distinguishable states.[1] QSL are closely related to time-energy uncertainty relations. In 1945, Leonid Mandelstam and Igor Tamm derived a time-energy uncertainty relation that bounds the speed of evolution in terms of the energy dispersion.[2] Over half a century later, Norman Margolus and Lev Levitin showed that the speed of evolution cannot exceed the mean energy,[3] a result known as the Margolus–Levitin theorem. Realistic physical systems in contact with an environment are known as open quantum systems and their evolution is also subject to QSL.[4][5] Quite remarkably it was shown that environmental effects, such as non-Markovian dynamics can speed up quantum processes,[6] which was verified in a cavity QED experiment.[7]

QSL have been used to explore the limits of computation[8][9] and complexity. In 2017, QSLs were studied in a quantum oscillator at high temperature. [10] In 2018, it was shown that QSL are not restricted to the quantum domain and that similar bounds hold in classical systems. [11][12] In 2021, both the Mandelstam-Tamm and the Margolus-Levitin QSL bounds were concurrently tested in a single experiment[13] which indicated there are "two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times."

Mandelstam-Tamm limit

Let be the Bures metric, defined by

If a quantum system is evolving under a time-dependent Hamiltonian , then its velocity according to Bures metric is upper bounded by
where is the uncertainty in energy at time .

Two corollaries:

Applications

Computation machinery is constructed out of physical matter that follows quantum mechanics, and each operation, if it is to be unambiguous, must be a transition of the system from one state to an orthogonal state. Suppose the computing machinery is a physical system evolving under Hamiltonian that does not change with time. Then according to the Margolus–Levitin theorem, its operations per time per energy obey

That is, the processing rate of all forms of computation cannot be higher than about 6 × 1033 operations per second per joule of energy. This includes "classical" computers since even classical computers are still made of matter that follows quantum mechanics.

References

  1. ^ Deffner, S.; Campbell, S. (10 October 2017). "Quantum speed limits: from Heisenberg's uncertainty principle to optimal quantum control". J. Phys. A: Math. Theor. 50 (45): 453001. arXiv:1705.08023. doi:10.1088/1751-8121/aa86c6. S2CID 3477317.
  2. ^ Mandelshtam, L. I.; Tamm, I. E. (1945). "The uncertainty relation between energy and time in nonrelativistic quantum mechanics". J. Phys. (USSR). 9: 249–254.
  3. ^ Margolus, Norman; Levitin, Lev B. (September 1998). "The maximum speed of dynamical evolution". Physica D: Nonlinear Phenomena. 120 (1–2): 188–195. arXiv:quant-ph/9710043. doi:10.1016/S0167-2789(98)00054-2. S2CID 468290.
  4. ^ Taddei, M. M.; Escher, B. M.; Davidovich, L.; de Matos Filho, R. L. (30 January 2013). "Quantum Speed Limit for Physical Processes". Physical Review Letters. 110 (5): 050402. arXiv:1209.0362. doi:10.1103/PhysRevLett.110.050402. PMID 23414007. S2CID 38373815.
  5. ^ del Campo, A.; Egusquiza, I. L.; Plenio, M. B.; Huelga, S. F. (30 January 2013). "Quantum Speed Limits in Open System Dynamics". Physical Review Letters. 110 (5): 050403. arXiv:1209.1737. doi:10.1103/PhysRevLett.110.050403. PMID 23414008. S2CID 8362503.
  6. ^ Deffner, S.; Lutz, E. (3 July 2013). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters. 111 (1): 010402. arXiv:1302.5069. doi:10.1103/PhysRevLett.111.010402. PMID 23862985. S2CID 36711861.
  7. ^ Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; Corcos, L. P.; Orozco, L. A.; Deffner, S. (11 June 2015). "Quantum speed limit for non-Markovian dynamics". Physical Review Letters. 114 (23): 233602. arXiv:1503.02591. doi:10.1103/PhysRevLett.114.233602. PMID 26196802. S2CID 14904633.
  8. ^ Lloyd, Seth (31 August 2000). "Ultimate physical limits to computation". Nature. 406 (6799): 1047–1054. arXiv:quant-ph/9908043. doi:10.1038/35023282. ISSN 1476-4687. PMID 10984064. S2CID 75923.
  9. ^ Lloyd, Seth (24 May 2002). "Computational Capacity of the Universe". Physical Review Letters. 88 (23): 237901. arXiv:quant-ph/0110141. doi:10.1103/PhysRevLett.88.237901. PMID 12059399. S2CID 6341263.
  10. ^ Deffner, S. (20 October 2017). "Geometric quantum speed limits: a case for Wigner phase space". New Journal of Physics. 19 (10): 103018. doi:10.1088/1367-2630/aa83dc. hdl:11603/19409.
  11. ^ Shanahan, B.; Chenu, A.; Margolus, N.; del Campo, A. (12 February 2018). "Quantum Speed Limits across the Quantum-to-Classical Transition". Physical Review Letters. 120 (7): 070401. arXiv:1710.07335. doi:10.1103/PhysRevLett.120.070401. PMID 29542956.
  12. ^ Okuyama, Manaka; Ohzeki, Masayuki (12 February 2018). "Quantum Speed Limit is Not Quantum". Physical Review Letters. 120 (7): 070402. arXiv:1710.03498. doi:10.1103/PhysRevLett.120.070402. PMID 29542975. S2CID 4027745.
  13. ^ Ness, Gal; Lam, Manolo R.; Alt, Wolfgang; Meschede, Dieter; Sagi, Yoav; Alberti, Andrea (22 December 2021). "Observing crossover between quantum speed limits". Science Advances. 7 (52): eabj9119. doi:10.1126/sciadv.abj9119. PMC 8694601. PMID 34936463.
  14. ^ Deffner, Sebastian; Lutz, Eric (2013-08-23). "Energy–time uncertainty relation for driven quantum systems". Journal of Physics A: Mathematical and Theoretical. 46 (33): 335302. arXiv:1104.5104. doi:10.1088/1751-8113/46/33/335302. hdl:11603/19394. ISSN 1751-8113.