This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's notability guidelines for products and services. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: "Real-time Cmix" – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this template message) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Real-time Cmix" – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this template message) (Learn how and when to remove this template message)

Real-Time Cmix (RTcmix) is one of the MUSIC-N family of computer music programming languages. RTcmix is descended from the MIX program developed by Paul Lansky at Princeton University in 1978 to perform algorithmic composition using digital audio soundfiles on an IBM 3031 mainframe computer. After synthesis functions were added, the program was renamed Cmix in the 1980s. Real-time capability was added by Brad Garton and David Topper in the mid-1990s, with support for TCP socket connectivity, interactive control of the scheduler, and object-oriented embedding of the synthesis engine into fully featured applications.

Over the years Cmix/RTcmix has run on a variety of computer platforms and operating systems, including NeXT, Sun Microsystems, IRIX, Linux, and Mac OS X. It is and has always been an open source project, differentiating it from commercial synthesizers and music software. It is currently developed by a group of computer music researchers at Princeton, Columbia University, and the University of Virginia.

RTcmix has a number of unique (or highly unusual) features when compared with other synthesis and signal processing languages. For one, it has a built-in MINC parser, which enables the user to write C-style code within the score file, extending its innate capability for algorithmic composition and making it closer in some respects to later music software such as SuperCollider and Max/MSP. It uses a single-script instruction file (the score file), and synthesis and signal processing routines (called instruments) exist as compile shared libraries. This is different from MUSIC-N languages such as Csound where the instruments exist in a second file written in a specification language that builds the routines out of simple building blocks (organized as opcodes or unit generators). RTcmix has similar functionality to Csound and other computer music languages, however, and their shared lineage means that scripts written for one language will be extremely familiar-looking (if not immediately comprehensible) to users of the other language.