In physics , rotatum is the derivative of torque with respect to time . Expressed as an equation, rotatum Ρ is:
P
→
=
d
τ
→
d
t
{\displaystyle {\vec {P))={\frac {d{\vec {\tau ))}{dt))}
where τ is torque and
d
d
t
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t))}
is the derivative with respect to time
t
{\displaystyle t}
.
The term rotatum is not universally recognized but is commonly used. This word is derived from the Latin word rotātus meaning to rotate.[citation needed ] The units of rotatum are force times distance per time, or equivalently, mass times length squared per time cubed; in the SI unit system this is kilogram metre squared per second cubed (kg·m2 /s3 ), or Newtons times meter per second (N·m/s).
Relation to other physical quantities
Newton's second law for angular motion says that:
τ
=
d
L
d
t
{\displaystyle \mathbf {\tau } ={\frac {\mathrm {d} \mathbf {L} }{\mathrm {d} t))}
where L is angular momentum , so if we combine the above two equations:
P
=
d
τ
d
t
=
d
d
t
(
d
L
d
t
)
=
d
2
L
d
t
2
=
d
2
(
I
⋅
ω
)
d
t
2
{\displaystyle \mathbf {\mathrm {P} } ={\frac {\mathrm {d} \mathbf {\tau } }{\mathrm {d} t))={\frac {\mathrm {d} }{\mathrm {d} t))\left({\frac {\mathrm {d} \mathbf {L} }{\mathrm {d} t))\right)={\frac {\mathrm {d} ^{2}\mathbf {L} }{\mathrm {d} t^{2))}={\frac {\mathrm {d} ^{2}(I\cdot \mathbf {\omega } )}{\mathrm {d} t^{2))))
where
I
{\displaystyle I}
is moment of Inertia and
ω
{\displaystyle \omega }
is angular velocity . If the moment of inertia is not changing over time (i.e. it is constant), then:
P
=
I
d
2
ω
d
t
2
{\displaystyle \mathbf {\mathrm {P} } =I{\frac {\mathrm {d} ^{2}\omega }{\mathrm {d} t^{2))))
which can also be written as:
P
=
I
ζ
{\displaystyle \mathbf {\mathrm {P} } =I\zeta }
where
ζ
{\displaystyle \zeta }
is angular jerk .
Linear/translational quantities
Angular/rotational quantities
Dimensions
1
L
L2
Dimensions
1
θ
θ 2
T
time : t s
absement : A m s
T
time : t s
1
distance : d , position : r , s , x , displacement m
area : A m2
1
angle : θ , angular displacement : θ rad
solid angle : Ω rad2 , sr
T−1
frequency : f s−1 , Hz
speed : v , velocity : v m s−1
kinematic viscosity : ν ,specific angular momentum : h m2 s−1
T−1
frequency : f s−1 , Hz
angular speed : ω , angular velocity : ω rad s−1
T−2
acceleration : a m s−2
T−2
angular acceleration : α rad s−2
T−3
jerk : j m s−3
T−3
angular jerk : ζ rad s−3
M
mass : m kg
weighted position: M ⟨x⟩ = ∑ m x
ML2
moment of inertia : I kg m2
MT−1
momentum : p , impulse : J kg m s−1 , N s
action : 𝒮 , actergy : ℵ kg m2 s−1 , J s
ML2 T−1
angular momentum : L , angular impulse : ΔL kg m2 s−1
action : 𝒮 , actergy : ℵ kg m2 s−1 , J s
MT−2
force : F , weight : F g kg m s−2 , N
energy : E , work : W , Lagrangian : L kg m2 s−2 , J
ML2 T−2
torque : τ , moment : M kg m2 s−2 , N m
energy : E , work : W , Lagrangian : L kg m2 s−2 , J
MT−3
yank : Y kg m s−3 , N s−1
power : P kg m2 s−3 , W
ML2 T−3
rotatum : P kg m2 s−3 , N m s−1
power : P kg m2 s−3 , W