Sectional density
A metal nail has a small cross sectional area compared to its mass, resulting in a high Sectional Density.
A metal nail has a small cross sectional area compared to its mass, resulting in a high sectional density.
SI unitkilograms per square meter (kg/m2)
Other units
kilograms per square centimeter (kg/cm2)
grams per square millimeter (g/mm2)
pounds per square inch (lbm/in2)

Sectional density (often abbreviated SD) is the ratio of an object's mass to its cross sectional area with respect to a given axis. It conveys how well an object's mass is distributed (by its shape) to overcome resistance along that axis.

Sectional density is used in gun ballistics. In this context, it is the ratio of a projectile's weight (often in either kilograms, grams, pounds or grains) to its transverse section (often in either square centimeters, square millimeters or square inches), with respect to the axis of motion. It conveys how well an object's mass is distributed (by its shape) to overcome resistance along that axis. For illustration, a nail can penetrate a target medium with its pointed end first with less force than a coin of the same mass lying flat on the target medium.

During World War II, bunker-busting Röchling shells were developed by German engineer August Cönders, based on the theory of increasing sectional density to improve penetration. Röchling shells were tested in 1942 and 1943 against the Belgian Fort d'Aubin-Neufchâteau[1] and saw very limited use during World War II.


In a general physics context, sectional density is defined as:


The SI derived unit for sectional density is kilograms per square meter (kg/m2). The general formula with units then becomes:


Units conversion table

Conversions between units for sectional density
kg/m2 kg/cm2 g/mm2 lbm/in2
1 kg/m2 = 1 0.0001 0.001 0.001422334
1 kg/cm2 = 10000 1 10 14.223343307
1 g/mm2 = 1000 0.1 1 1.4223343307
1 lbm/in2 = 703.069579639 0.070306957 0.703069579 1

(Values in bold face are exact.)

Use in ballistics

This section appears to contradict itself on area of a circle ("pi r^2" not "d^2"). Please see the talk page for more information. (September 2022)
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (January 2021) (Learn how and when to remove this template message)

The sectional density of a projectile can be employed in two areas of ballistics. Within external ballistics, when the sectional density of a projectile is divided by its coefficient of form (form factor in commercial small arms jargon[3]); it yields the projectile's ballistic coefficient.[4] Sectional density has the same (implied) units as the ballistic coefficient.

Within terminal ballistics, the sectional density of a projectile is one of the determining factors for projectile penetration. The interaction between projectile (fragments) and target media is however a complex subject. A study regarding hunting bullets shows that besides sectional density several other parameters determine bullet penetration.[5][6][7]

If all other factors are equal, the projectile with the greatest amount of sectional density will penetrate the deepest.

Metric units

When working with ballistics using SI units, it is common to use either grams per square millimeter or kilograms per square centimeter. Their relationship to the base unit kilograms per square meter is shown in the conversion table above.

Grams per square millimeter

Using grams per square millimeter (g/mm2), the formula then becomes:


For example, a small arms bullet weighing 10.4 grams (160 gr) and having a diameter of 7.2 mm (0.284 in) has a sectional density of:

10.4 g/(7.2 mm)2 = 0.200 g/mm2

Kilograms per square centimeter

Using kilograms per square centimeter (kg/cm2), the formula then becomes:


For example, an M107 projectile weighing 43.2 kg and having a body diameter of 154.71 millimetres (15.471 cm) has a sectional density of:

43.2 kg/(15.471 mm)2 = 0.180 kg/cm2

English units

In older ballistics literature from English speaking countries, and still to this day, the most commonly used unit for sectional density of circular cross-sections is (mass) pounds per square inch (lbm/in2) The formula then becomes:



The sectional density defined this way is usually presented without units. In Europe the derivative unit g/cm2 is also used in literature regarding small arms projectiles to get a number in front of the decimal separator.[citation needed]

As an example, a bullet 160 grains (10.4 g) in weight and a diameter of 0.284 in (7.2 mm), has a sectional density (SD) of:

160 g/[7000 × (0.284 in)2] = 0.283 lbm/in2

As another example, the M107 projectile mentioned above weighing 95.2 pounds (43.2 kg) and having a body diameter of 6.0909 inches (154.71 mm) has a sectional density of:

95.2 lb/(6.0909 in)2 = 2.567 lbm/in2

See also


  1. ^ Les étranges obus du fort de Neufchâteau (in French)
  2. ^ Wound Ballistics: Basics and Applications
  3. ^ Hornady Handbook of Cartridge Reloading:Rifle,Pistol Vol. II (1973) Hornady Manufacturing Company, Fourth Printing July 1978, p505
  4. ^ Bryan Litz. Applied Ballistics for Long Range Shooting.
  5. ^ Shooting Holes in Wounding Theories: The Mechanics of Terminal Ballistics
  6. ^ MacPherson D: Bullet Penetration—Modeling the Dynamics and the Incapacitation Resulting From Wound Trauma. Ballistics Publications, El Segundo, CA, 1994.
  7. ^ Schultz, Gerard. "Sectional Density - A Practical Joke?". Archived from the original on 2023-01-15.
  8. ^ The Sectional Density of Rifle Bullets By Chuck Hawks
  9. ^ Sectional Density and Ballistic Coefficients
  10. ^ Sectional Density for Beginners By Bob Beers