This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2023) (Learn how and when to remove this message)

In computer science, a simple precedence parser is a type of bottom-up parser for context-free grammars that can be used only by simple precedence grammars.

The implementation of the parser is quite similar to the generic bottom-up parser. A stack is used to store a viable prefix of a sentential form from a rightmost derivation. The symbols ⋖, ≐ and ⋗ are used to identify the pivot, and to know when to Shift or when to Reduce.

Implementation

SearchProductionToReduce (Stack)

Example

Given following language, which can parse arithmetic expressions with the multiplication and addition operations:

E  --> E + T' | T'
T' --> T
T  --> T * F  | F
F  --> ( E' ) | num
E' --> E

num is a terminal, and the lexer parse any integer as num; E represents an arithmetic expression, T is a term and F is a factor.

and the Parsing table:

E E' T T' F + * ( ) num $
E
E'
T
T'
F
+
*
(
)
num
$
STACK                   PRECEDENCE    INPUT            ACTION

$                            ⋖        2 * ( 1 + 3 )$   SHIFT
$ ⋖ 2                        ⋗        * ( 1 + 3 )$     REDUCE (F -> num)
$ ⋖ F                        ⋗        * ( 1 + 3 )$     REDUCE (T -> F)
$ ⋖ T                        ≐        * ( 1 + 3 )$     SHIFT
$ ⋖ T ≐ *                    ⋖        ( 1 + 3 )$       SHIFT
$ ⋖ T ≐ * ⋖ (                ⋖        1 + 3 )$         SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ 1            ⋗        + 3 )$           REDUCE 4× (F -> num) (T -> F) (T' -> T) (E ->T ') 
$ ⋖ T ≐ * ⋖ ( ⋖ E            ≐        + 3 )$           SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ +        ⋖        3 )$             SHIFT
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ + < 3    ⋗        )$               REDUCE 3× (F -> num) (T -> F) (T' -> T) 
$ ⋖ T ≐ * ⋖ ( ⋖ E ≐ + ≐ T    ⋗        )$               REDUCE 2× (E -> E + T) (E' -> E)
$ ⋖ T ≐ * ⋖ ( ≐ E'           ≐        )$               SHIFT
$ ⋖ T ≐ * ⋖ ( ≐ E' ≐ )       ⋗        $                REDUCE (F -> ( E' ))
$ ⋖ T ≐ * ≐ F                ⋗        $                REDUCE (T -> T * F)
$ ⋖ T                        ⋗        $                REDUCE 2× (T' -> T) (E -> T')
$ ⋖ E                                 $                ACCEPT

References