Named after | Harold Smith (brother-in-law of Albert Wilansky) |
---|---|
Author of publication | Albert Wilansky |
Total no. of terms | infinity |
Formula | see the mathematical definition |
First terms | 4, 22, 27, 58, 85, 94, 121 |
Largest known term | see Properties |
OEIS index |
|
In number theory, a Smith number is a composite number for which, in a given number base, the sum of its digits is equal to the sum of the digits in its prime factorization in the given number base. In the case of numbers that are not square-free, the factorization is written without exponents, writing the repeated factor as many times as needed.
Smith numbers were named by Albert Wilansky of Lehigh University, as he noticed the property in the phone number (493-7775) of his brother-in-law Harold Smith:
while
Let be a natural number. For base , let the function be the digit sum of n in base . A natural number has the integer factorisation
and is a Smith number if
where is the p-adic valuation of .
For example, in base 10, 378 = 21 33 71 is a Smith number since 3 + 7 + 8 = 2 · 1 + 3 · 3 + 7 · 1, and 22 = 21 111 is a Smith number, because 2 + 2 = 2 · 1 + (1 + 1) · 1
The first few Smith numbers in base 10 are:
W.L. McDaniel in 1987 proved that there are infinitely many Smith numbers.[1][2] The number of Smith numbers in base 10 below 10n for n=1,2,... is:
Two consecutive Smith numbers (for example, 728 and 729, or 2964 and 2965) are called Smith brothers.[3] It is not known how many Smith brothers there are. The starting elements of the smallest Smith n-tuple (meaning n consecutive Smith numbers) in base 10 for n = 1, 2, ... are:[4]
Smith numbers can be constructed from factored repunits. The largest known Smith number in base 10 as of 2010[update] is:
where R1031 is a repunit equal to (101031−1)/9.