Identifiers | |
---|---|
3D model (JSmol)
|
|
3655041 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.011.846 |
EC Number |
|
MeSH | C009281 |
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
NaOCN | |
Molar mass | 65.01 g/mol |
Appearance | white crystalline solid |
Odor | odorless |
Density | 1.893 g/cm3 |
Melting point | 550 °C (1,022 °F; 823 K) |
11.6 g/100 mL (25 °C) | |
Solubility | ethanol: 0.22 g/100 mL (0 °C) dimethylformamide: 0.05 g/100 mL (25 °C) slightly soluble in ammonia, benzene insoluble in diethyl ether |
Structure | |
body centered rhombohedral | |
Thermochemistry | |
Heat capacity (C)
|
86.6 J/mol K |
Std molar
entropy (S⦵298) |
119.2 J/mol K |
Std enthalpy of
formation (ΔfH⦵298) |
−400 kJ/mol |
Hazards | |
GHS labelling: | |
Warning | |
H302, H412 | |
P264, P270, P273, P301+P312, P330, P501 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose)
|
1500 mg/kg (rat, oral) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Sodium cyanate is the inorganic compound with the formula NaOCN. A white solid, it is the sodium salt of the cyanate anion.
The anion is described by two resonance structures: N≡C−O− and −N=C=O
The salt adopts a body centered rhombohedral crystal lattice structure (trigonal crystal system) at room temperature.[1]
Sodium cyanate is prepared industrially by the reaction of urea with sodium carbonate at elevated temperature.
Sodium allophanate is observed as an intermediate:[2]
It can also be prepared in the laboratory by oxidation of a cyanide in aqueous solution by a mild oxidizing agent such as lead oxide.[3]
The main use of sodium cyanate is for steel hardening.[2]
Sodium cyanate is used to produce cyanic acid, often in situ:
This approach is exploited for condensation with amines to give unsymmetrical ureas:
Such urea derivatives have a range of biological activity.[4]