SpaceX CRS-27
CRS-27 on the pad
NamesSpX-27
Mission typeISS resupply
OperatorSpaceX
COSPAR ID2023-033A Edit this at Wikidata
SATCAT no.55850Edit this on Wikidata
Mission duration31 days, 20 hours and 28 minutes
Spacecraft properties
SpacecraftCargo Dragon C209
Spacecraft typeCargo Dragon
ManufacturerSpaceX
Dry mass9,525 kg (20,999 lb)
DimensionsHeight: 8.1 m (27 ft)
Diameter: 4 m (13 ft)
Start of mission
Launch date15 March 2023, 00:30 UTC[1]
RocketFalcon 9 Block 5, B1073.7
Launch siteKennedy Space Center, LC-39A
ContractorSpaceX
End of mission
Recovered byMV Shannon
Landing date15 April 2023, 20:58 UTC[2]
Landing siteGulf of Mexico
Orbital parameters
Reference systemGeocentric orbit
RegimeLow Earth orbit
Inclination51.66°
Docking with ISS
Docking portHarmony forward
Docking date16 March 2023, 11:31 UTC
Undocking date15 April 2023, 15:05 UTC
Time docked30 days, 3 hours and 34 minutes
Cargo
Mass2,852 kg (6,288 lb)

SpaceX CRS-27 mission patch  

SpaceX CRS-27, also known as SpX-27, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 15 March 2023.[1] The mission was contracted by NASA and was flown by SpaceX using Cargo Dragon C209. This was the seventh flight for SpaceX under NASA's CRS Phase 2.[3]

Cargo Dragon

Main article: SpaceX Dragon 2

SpaceX plans to reuse the Cargo Dragons up to five times. The Cargo Dragon will launch without SuperDraco abort engines, without seats, cockpit controls and the life support system required to sustain astronauts in space.[4][5] Dragon 2 improves on Dragon 1 in several ways, including lessened refurbishment time, leading to shorter periods between flights.[6]

The new Cargo Dragon capsules under the NASA CRS Phase 2 contract will land east of Florida in the Atlantic Ocean.[4][6]

Payload

NASA contracted for the CRS-27 mission from SpaceX and therefore determines the primary payload, date of launch, and orbital parameters for the Cargo Dragon.[7]

STP-H9

A technology demonstration mission which consists of the following payloads:[8] [9]

Research

Various experiments were transported to the orbiting laboratory, and provided valuable insight for researchers. These include student projects that were given the opportunity to fly and operate their experiments on the ISS as part of DLR's Überflieger 2 competition. Among them are the projects:

European Space Agency (ESA) research and activities:[11]

NASA Glenn Research Center studies:[12]

Materials International Space Station Experiment MISSE-17:

Mouse Habitat Unit-8 (MHU-8) mission - The NASA-JAXA Joint Partial-gravity Rodent Research Mouse Habitat Unit-8 (JPG-RR MHU-8) mission tested the impact of spaceflight and induced partial gravities on mice. The gravities tested were 0, 0.33, 0.66, 1 g. An interdisciplinary team of investigators will study how multiple biological systems (bone, muscle, cardiovascular system, neuro-performance, circadian rhythms, and microbiome) respond to these conditions. [13]

CubeSats

CubeSats planned for this mission:

NEUDOSE[14]

The NEUtron DOSimetry & Exploration (NEUDOSE) mission from the McMaster Interdisciplinary Satellite Team[15] aims to further our understanding of long-term exposure to space radiation by investigating how charged and neutral particles contribute to the human equivalent dose during low-Earth orbit (LEO) missions. NEUDOSE is a 2U CubeSat built by students at McMaster University. The scientific goals[16][17] of the project are to:

The mission objectives also include providing early-career science and engineering students with valuable leadership, technical, and flight project development skills.[14] Furthermore, the NEUDOSE mission is involved with the development of amateur radio operators and custom hardware.[18]

Northern SPIRIT

Three CubeSat satellites were built in part of the Northern Space Program for Innovative Research and Integrated Training (Northern SPIRIT). These CubeSats were constructed as a collaboration between Yukon University, Aurora Research Institute in the Northwest Territories, and the University of Alberta.[19] This initiative is supported by the Canadian Space Agency (CSA) as a part of the Canadian CubeSat Project (CCP). In addition to what's below, all three satellites have a primary goal of gathering magnetic field data of the ionosphere to study small scale field-aligned currents.[19]

ELaNa 50

This new iteration of the ELaNa (Educational Launch of Nanosatellites) initiative will consist of two cubesats from American education institutes:

See also

References

  1. ^ a b Garcia, Mark (6 March 2023). "Expanded Station Crew Works Together Before Quartet Departure". NASA. Retrieved 7 March 2023.
  2. ^ Lavelle, Heidi (15 April 2023). "SpaceX Cargo Dragon Splashes Down, Returning Science to Earth for NASA". NASA. Retrieved 15 April 2023.
  3. ^ Reckart, Timothy (15 June 2022). "Microgravity Research Flights". NASA. Retrieved 24 July 2022.
  4. ^ a b Office of Inspector General (26 April 2018). Audit of Commercial Resupply Services to the International Space Center (PDF) (Report). Vol. IG-18-016. NASA. pp. 24, 28–30. Retrieved 4 April 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  5. ^ "Dragon 2 modifications to Carry Cargo for CRS-2 missions". Teslarati. Retrieved 4 April 2021.
  6. ^ a b Clark, Stephen (2 August 2019). "SpaceX to begin flights under new cargo resupply contract next year". Spaceflight Now. Retrieved 4 April 2021.
  7. ^ "SpaceX Commercial Resupply". ISS Program Office. NASA. 1 July 2019. Retrieved 4 April 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  8. ^ "STP-H9". Gunter's Space Page. Retrieved 15 March 2023.
  9. ^ Clark, Stephen. "U.S. military experiments hitching ride to space station on SpaceX cargo ship – Spaceflight Now". Retrieved 15 March 2023.
  10. ^ "First In-Space Laser Power Beaming Experiment Surpasses 100 Days of Successful On-Orbit Op". U.S. Naval Research Laboratory. Retrieved 19 November 2023.
  11. ^ https://www.esa.int [bare URL]
  12. ^ "ISS Research Program". Glenn Research Center. NASA. 1 January 2020. Retrieved 4 April 2021. Public Domain This article incorporates text from this source, which is in the public domain.
  13. ^ "The NASA Task Book". taskbook.nasaprs.com. Retrieved 2 August 2023.
  14. ^ a b "McMaster NEUDOSE". McMaster NEUDOSE. Retrieved 28 November 2022.
  15. ^ "About Us". McMaster NEUDOSE. Retrieved 28 November 2022.
  16. ^ "Mission Objectives". McMaster NEUDOSE. Retrieved 28 November 2022.
  17. ^ Hanu, A. R.; Barberiz, J.; Bonneville, D.; Byun, S. H.; Chen, L.; Ciambella, C.; Dao, E.; Deshpande, V.; Garnett, R.; Hunter, S. D.; Jhirad, A.; Johnston, E. M.; Kordic, M.; Kurnell, M.; Lopera, L. (December 2016). "NEUDOSE: A CubeSat Mission for Dosimetry of Charged Particles and Neutrons in Low-Earth Orbit". Radiation Research. 187 (1): 42–49. doi:10.1667/RR14491.1. ISSN 0033-7587. PMID 28001909. S2CID 20366207.
  18. ^ "Amateur Radio". McMaster NEUDOSE. Retrieved 28 November 2022.
  19. ^ a b "Northern SPIRIT". AlbertaSat. 5 January 2021. Retrieved 24 November 2022.
  20. ^ "Ex-Alta 2". AlbertaSat. 18 November 2018. Retrieved 24 November 2022.
  21. ^ "AuroraSat: Canadian CubeSat Project | Aurora Research Institute". nwtresearch.com. Retrieved 24 November 2022.