A superbase is a compound that has a particularly high affinity for protons. Superbases are of theoretical interest and potentially valuable in organic synthesis.[1][2] Superbases have been described and used since the 1850s.[3][4]

Definitions

Generically IUPAC defines a superbase as a "compound having a very high basicity, such as lithium diisopropylamide."[5] Superbases are often defined in two broad categories, organic and organometallic.

Organic superbases are charge-neutral compounds with basicities greater than that of proton sponge (pKBH+ = 18.6 in MeCN)."[1] In a related definition: any species with a higher absolute proton affinity (APA = 245.3 kcal/mol) and intrinsic gas phase basicity (GB = 239 kcal/mol) than proton sponge.[6] Common superbases of this variety feature amidine, guanidine, and phosphazene functional groups. Strong superbases can be designed by utilizing various approaches[7][8][9] to stabilize the conjugate acid, up to the theoretical limits of basicity.[10]

Organometallic superbases, sometimes called Lochmann–Schlosser superbases, result from the combination of alkali metal alkoxides and organolithium reagents.[11] Caubère defines superbases as "bases resulting from a mixing of two (or more) bases leading to new basic species possessing inherent new properties. The term superbase does not mean a base is thermodynamically and/or kinetically stronger than another, instead it means that a basic reagent is created by combining the characteristics of several different bases."[12]

Organic superbases

Protonation of Verkade base. Its conjugate acid has a pKa of 32.9 in acetonitrile.[13]

Organic superbases are mostly charge-neutral, nitrogen containing species, where nitrogen act as a proton acceptor. These include the phosphazenes, phosphanes, amidines, and guanidines. Other organic compounds that meet the physicochemical or structural definitions of 'superbase' include proton chelators like the aromatic proton sponges and the bispidines.[14][15] Multicyclic polyamines, like DABCO might also be loosely included in this category.[4] Phosphanes and carbodiphosphoranes are also strong organosuperbases.[16][17][18][19]

Despite enormous proton affinity, many organosuperbases can exhibit low nucleophilicity.

Superbases are used in organocatalysis.[20][21]

Organometallic

Deprotonation using LDA [22].

Organometallic compounds of electropositive metals are superbases, but they are generally strong nucleophiles. Examples include organolithium and organomagnesium (Grignard reagent) compounds. Another type of organometallic superbase has a reactive metal exchanged for a hydrogen on a heteroatom, such as oxygen (unstabilized alkoxides) or nitrogen (metal amides such as lithium diisopropylamide).[23]

The Schlosser base (or Lochmann-Schlosser base), the combination of n-butyllithium and potassium tert-butoxide, is commonly cited as a superbase. n-Butyllithium and potassium tert-butoxide form a mixed aggregate of greater reactivity than either component reagent.[24]

Inorganic

Inorganic superbases are typically salt-like compounds with small, highly charged anions, e.g. lithium hydride, potassium hydride, and sodium hydride. Such species are insoluble, but the surfaces of these materials are highly reactive and slurries are useful in synthesis. Caesium oxide is probably the strongest base according to quantum-chemical calculations.[10]

See also

References

  1. ^ a b Puleo, Thomas R.; Sujansky, Stephen J.; Wright, Shawn E.; Bandar, Jeffrey S. (2021). "Organic Superbases in Recent Synthetic Methodology Research". Chemistry – A European Journal. 27 (13): 4216–4229. doi:10.1002/chem.202003580. PMID 32841442. S2CID 221326865.
  2. ^ Pozharskii, Alexander F.; Ozeryanskii, Valery A. (2012). "Proton Sponges and Hydrogen Transfer Phenomena". Mendeleev Communications. 22 (3): 117–124. doi:10.1016/j.mencom.2012.05.001.
  3. ^ "BBC - h2g2 - History of Chemistry - Acids and Bases". Retrieved 2009-08-30.
  4. ^ a b Superbases for Organic Synthesis Ed. Ishikawa, T., John Wiley and Sons, Ltd.: West Sussex, UK. 2009.
  5. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "superacid". doi:10.1351/goldbook.S06135
  6. ^ Raczynska, Ewa D.; Decouzon, Michele; Gal, Jean-Francois; Maria, Pierre-Charles; Wozniak, Krzysztof; Kurg, Rhio; Carins, Stuart N. (3 June 2010). "ChemInform Abstract: Superbases and Superacids in the Gas Phase". ChemInform. 31 (33): no. doi:10.1002/chin.200033267.
  7. ^ Maksić, Zvonimir B.; Kovačević, Borislav; Vianello, Robert (2012-10-10). "Advances in Determining the Absolute Proton Affinities of Neutral Organic Molecules in the Gas Phase and Their Interpretation: A Theoretical Account". Chemical Reviews. 112 (10): 5240–5270. doi:10.1021/cr100458v. ISSN 0009-2665. PMID 22857519.
  8. ^ Formica, Michele; Rozsar, Daniel; Su, Guanglong; Farley, Alistair J. M.; Dixon, Darren J. (2020). "Bifunctional Iminophosphorane Superbase Catalysis: Applications in Organic Synthesis". Accounts of Chemical Research. 53 (10): 2235–2247. doi:10.1021/acs.accounts.0c00369. PMID 32886474. S2CID 221503523.
  9. ^ Vazdar, Katarina; Margetić, Davor; Kovačević, Borislav; Sundermeyer, Jörg; Leito, Ivo; Jahn, Ullrich (2021). "Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality". Accounts of Chemical Research. 54 (15): 3108–3123. doi:10.1021/acs.accounts.1c00297. PMID 34308625. S2CID 236430307.
  10. ^ a b Kulsha, Andrey; Ragoyja, Ekaterina; Ivashkevich, Oleg (2022). "Strong Bases Design: Predicted Limits of Basicity". J. Phys. Chem. A. 126 (23): 3642–3652. Bibcode:2022JPCA..126.3642K. doi:10.1021/acs.jpca.2c00521. PMID 35657384. S2CID 249313043.
  11. ^ Klett, Jan (2021). "Structural Motifs of Alkali Metal Superbases in Non‐coordinating Solvents". Chemistry – A European Journal. 27 (3): 888–904. doi:10.1002/chem.202002812. PMC 7839563. PMID 33165981.
  12. ^ Caubère, P (1993). "Unimetal Super Bases". Chemical Reviews. 93 (6): 2317–2334. doi:10.1021/cr00022a012.
  13. ^ Verkade, John G.; Urgaonkar, Sameer (2012). "Proazaphosphatrane". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn00702.pub2. ISBN 978-0471936237.
  14. ^ Pozharskii, Alexander F.; Ozeryanskii, Valery A. (2012). "Proton Sponges and Hydrogen Transfer Phenomena". Mendeleev Communications. 22 (3): 117–124. doi:10.1016/j.mencom.2012.05.001.
  15. ^ Barić, Danijela; Dragičević, Ivan; Kovačević, Borislav (2013-04-19). "Design of Superbasic Guanidines: The Role of Multiple Intramolecular Hydrogen Bonds". The Journal of Organic Chemistry. 78 (8): 4075–4082. doi:10.1021/jo400396d. ISSN 0022-3263. PMID 23445344.
  16. ^ Kovačević, Borislav; Maksić, Zvonimir B. (2006). "High basicity of phosphorus–proton affinity of tris-(tetramethylguanidinyl)phosphine and tris-(hexamethyltriaminophosphazenyl)phosphine by DFT calculations". Chemical Communications (14): 1524–1526. doi:10.1039/b517349c. ISSN 1359-7345. PMID 16575448.
  17. ^ Ullrich, Sebastian; Kovačević, Borislav; Xie, Xiulan; Sundermeyer, Jörg (2019). "Phosphazenyl Phosphines: The Most Electron-Rich Uncharged Phosphorus Brønsted and Lewis Bases". Angewandte Chemie International Edition. 58 (30): 10335–10339. doi:10.1002/anie.201903342. ISSN 1521-3773. PMID 31037821. S2CID 140304424.
  18. ^ Mehlmann, Paul; Mück-Lichtenfeld, Christian; Tan, Tristan T. Y.; Dielmann, Fabian (2017-05-02). "Tris(imidazolin-2-ylidenamino)phosphine: A Crystalline Phosphorus(III) Superbase That Splits Carbon Dioxide". Chemistry - A European Journal. 23 (25): 5929–5933. doi:10.1002/chem.201604971. PMID 27779340.
  19. ^ Ullrich, Sebastian; Kovačević, Borislav; Koch, Björn; Harms, Klaus; Sundermeyer, Jörg (2019). "Design of non-ionic carbon superbases: second generation carbodiphosphoranes". Chemical Science. 10 (41): 9483–9492. doi:10.1039/C9SC03565F. ISSN 2041-6520. PMC 6993619. PMID 32055322.
  20. ^ MacMillan, David W. C. (2008). "The advent and development of organocatalysis". Nature. 455 (7211): 304–308. Bibcode:2008Natur.455..304M. doi:10.1038/nature07367. PMID 18800128. S2CID 205215034.
  21. ^ Ishikawa, Tsutomu, ed. (2009). Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts. John Wiley & Sons. doi:10.1002/9780470740859. ISBN 9780470740859.
  22. ^ Jianshe Kong, Tao Meng, Pauline Ting, and Jesse Wong (2010). "Preparation of Ethyl 1-Benzyl-4-Fluoropiperidine-4-Carboxylate". Organic Syntheses. 87: 137. doi:10.15227/orgsyn.087.0137.((cite journal)): CS1 maint: multiple names: authors list (link)
  23. ^ Trofimov, B.A.; Schmidt, E.Yu. (2022). "Superbases in Organic Synthesis". Chemical Problems. 20 (4): 325–340. doi:10.32737/2221-8688-2022-3-325-340. S2CID 253832800.
  24. ^ Schlosser, M. (1988). "Superbases for organic synthesis". Pure Appl. Chem. 60 (11): 1627–1634. doi:10.1351/pac198860111627.