This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (August 2019) (Learn how and when to remove this template message)

In algebraic number theory, a supersingular prime for a given elliptic curve is a prime number with a certain relationship to that curve. If the curve E is defined over the rational numbers, then a prime p is supersingular for E if the reduction of E modulo p is a supersingular elliptic curve over the residue field Fp.

Noam Elkies showed that every elliptic curve over the rational numbers has infinitely many supersingular primes. However, the set of supersingular primes has asymptotic density zero (if E does not have complex multiplication). Lang & Trotter (1976) conjectured that the number of supersingular primes less than a bound X is within a constant multiple of , using heuristics involving the distribution of eigenvalues of the Frobenius endomorphism. As of 2019, this conjecture is open.

More generally, if K is any global field—i.e., a finite extension either of Q or of Fp(t)—and A is an abelian variety defined over K, then a supersingular prime for A is a finite place of K such that the reduction of A modulo is a supersingular abelian variety.