This template is used on approximately 273,000 pages.To avoid major disruption and server load, any changes should be tested in the template's /sandbox or /testcases subpages, or in your own user subpage. The tested changes can be added to this page in a single edit. Consider discussing changes on the talk page before implementing them. |

This template uses Lua: |

The **Template:Precision** determines the precision (as a count of decimal digits) for any amount, large or negative, using a fast algorithm. It can also handle a trailing decimal point (such as "15." or "-41.") or trailing zeroes (such as "15.34000" having precision as 5 decimal digits). For fractional input it returns the base ten logarithm of the numerator.

`((Precision|1111.123456789))` |
9 |

`((Precision|1111.12345678))` |
8 |

`((Precision|1111.1234567))` |
7 |

`((Precision|1111.123456))` |
6 |

`((Precision|1111.12345))` |
5 |

`((Precision|1111111111.12345678))` |
8 |

`((Precision|1111111111.1234567))` |
7 |

`((Precision|1111111111.123456))` |
6 |

`((Precision|1111111111.12345))` |
5 |

`((Precision|1111111111.1234))` |
4 |

`((Precision|1111111111.123))` |
3 |

`((Precision|1111111111.12))` |
2 |

`((Precision|1111111111.1))` |
1 |

`((Precision|1111111111.10))` |
2 |

`((Precision|1111111111.100))` |
3 |

`((Precision|1111111111.1000))` |
4 |

`((Precision|1111111111.10000))` |
5 |

`((Precision|1111111111))` |
0 |

`((Precision|1111111110))` |
-1 |

`((Precision|1111111100))` |
-2 |

`((Precision|1111111000))` |
-3 |

`((Precision|1111110000))` |
-4 |

`((Precision|1111100000))` |
-5 |

`((Precision|1111000000))` |
-6 |

`((Precision|1110000000))` |
-7 |

`((Precision|1100000000))` |
-8 |

`((Precision|0))` |
0 |

`((Precision|1))` |
0 |

`((Precision|22.45))` |
2 |

`((Precision|22.12345))` |
5 |

`((Precision|22))` |
0 |

`((Precision|22000))` |
-3 |

`((Precision|-15.275))` |
3 |

`((Precision|-15.2500))` |
4 |

`((Precision|23000222000111.432))` |
3 |

`((Precision|-15.123))` |
3 |

`((Precision|0.09))` |
2 |

`((Precision|0.88))` |
2 |

`((Precision|880000))` |
-4 |

`((Precision|90000000))` |
-7 |

- For numbers in scientific notation, the precision is typically returned as too low by 1 decimal place. Example: ((precision |7.1234E+06)) → -2 (should be precision as 4 decimal digits, not 3).

- NOTE A1: This template determines the precision of decimals by counting the length of the numeric string (in a #switch comparing lengths of padded strings), then subtracting integer length, minus the decimal point, and minus 1 if negative. For integers, 1 place is subtracted for each trailing 0 on the integer. For fractions, any prior count is cleared x 0, then returns the base ten logarithm of denominator: (..prior...)*0 + (ln denom / ln 10).
- NOTE D2: The check, for whole integers, compares the amount versus appending "0" at the end: when the amount is a decimal, then the value is unchanged by appending 0 at the end: so 5.23 = 5.230 is true, whereas for whole integers, it would be: 5 = 50 as false, due to values becoming n*10 for integer n. So, for integer n, the check rejects: n = n0 as false; hence n is integer.
- NOTE M3: The magnitude of the integer portion is calculated by logarithm of the floor of absolute value (divided by natural logarithm of 10 to adjust for e=2.71828*), as: ln (floor( abs(-0.050067) )+0.99 )/ln10 Function floor(x) trims the decimal part, to leave the whole count: 0-9 yield 0, 10-19 as 1, 1000-1999 as 3. The abs(x) avoids floor of negatives, floor(-0.1)= -1, hence using abs(x) ensures -0.1 floors to 0 not -1. Near zero, the +0.99 avoids invalid log of 0, but does not round-up any decimals, already floored as nnn.00. Complexity is 6 operations: floor of abs( {1} ) +0.99 then log
_{10}*x*(ln*x*÷ ln10), then floor that logarithm ratio. Decimals -1 < x < 1 yield -1, avoiding log 0.001 = -3. - NOTE N4: Nesting of if-else and nested templates is kept to a minimum, due to the MediaWiki 1.6 limit of 40 levels of if-logic for all nested templates used together. Template {ordomag} was omitted to avoid 2 more levels of nested templates. Template {Precision} had 8 levels, and this template was trimmed to only 5 levels.
- NOTE S5: The #switch is run with "x" prepended in front of the amount, otherwise a #switch will compare as numeric where "2" would match "2.0" even though "2" is length 1 so "x2" no longer matches with "x2.0" as non-numeric. The #switch will exit on the first match, so smaller lengths are compared first, to avoid extra comparisons for more rare, longer numeric strings up to 41 long.
- NOTE W6: The check for integers with whole end-zeroes uses typical n=n/10*10, for each power of 10, where whole millions match: ((#ifexpr: {1}=floor( {1}/1E6 )*1E6| )) Previously, {Precision} had tried to use "round" to detect end-zeroes but "round" loses precision at -5, so, n00000 round -5 differs from n00000 slightly, and comparisons to exact rounded amounts failed to match some numbers when 6 or more zeroes "n000000".
- NOTE Z7: The check on zero for any .00000 compares adding 1 to the amount, versus appending "1" at the end: if the amount is a decimal, then adding 1 will be larger than appending 1 at the end: 0.00 + 1 > 0.001, whereas for whole zero, it would be: 0+1 > 01 as false, due to the value being the same. So, for integer 0, the check rejects: 0+1 > 01 as false; hence whole 0 is integer.