It has been suggested that this article be merged into Shell (structure). (Discuss) Proposed since April 2021.
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Thin-shell structure" – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message)
Shell structure of the TWA Flight Center Building by Eero Saarinen, John F. Kennedy International Airport, New York
The Forest Opera, an open-air amphitheatre in Sopot, Poland, with a membrane roof.
The Forest Opera, an open-air amphitheatre in Sopot, Poland, with a membrane roof.
Great Court, with a lattice thin-shell roof by Buro Happold with Norman Foster, British Museum, London
Great Court, with a lattice thin-shell roof by Buro Happold with Norman Foster, British Museum, London

Thin-shell structures (also called plate and shell structures) are lightweight constructions using shell elements. These elements, typically curved, are assembled to make large structures. Typical applications include aircraft fuselages, boat hulls, and the roofs of large buildings.

Definition

A thin shell is defined as a shell with a thickness which is small compared to its other dimensions and in which deformations are not large compared to thickness. A primary difference between a shell structure and a plate structure is that, in the unstressed state, the shell structure has curvature as opposed to the plates structure which is flat. Membrane action in a shell is primarily caused by in-plane forces (plane stress), but there may be secondary forces resulting from flexural deformations. Where a flat plate acts similar to a beam with bending and shear stresses, shells are analogous to a cable which resists loads through tensile stresses. The ideal thin shell must be capable of developing both tension and compression.[1]

Types

The most popular types of thin-shell structures are:

See also

References

  1. ^ Chen, Wai-Fah; Lui, E. M., eds. (2005-02-28). Handbook of Structural Engineering, Second Edition (2 ed.). Boca Raton: CRC Press. ISBN 9780849315695.

Further reading